Barbara Calabrese
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Calabrese.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Claudia S. Barros; Barbara Calabrese; Pablo Chamero; Amanda J. Roberts; Edward Korzus; K. C. Kent Lloyd; Lisa Stowers; Mark Mayford; Shelley Halpain; Ulrich Müller
Neuregulin-1 (NRG1) and its ErbB2/B4 receptors are encoded by candidate susceptibility genes for schizophrenia, yet the essential functions of NRG1 signaling in the CNS are still unclear. Using CRE/LOX technology, we have inactivated ErbB2/B4-mediated NRG1 signaling specifically in the CNS. In contrast to expectations, cell layers in the cerebral cortex, hippocampus, and cerebellum develop normally in the mutant mice. Instead, loss of ErbB2/B4 impairs dendritic spine maturation and perturbs interactions of postsynaptic scaffold proteins with glutamate receptors. Conversely, increased NRG1 levels promote spine maturation. ErbB2/B4-deficient mice show increased aggression and reduced prepulse inhibition. Treatment with the antipsychotic drug clozapine reverses the behavioral and spine defects. We conclude that ErbB2/B4-mediated NRG1 signaling modulates dendritic spine maturation, and that defects at glutamatergic synapses likely contribute to the behavioral abnormalities in ErbB2/B4-deficient mice.
Neuron | 2005
Barbara Calabrese; Shelley Halpain
Spine morphology is regulated by intracellular signals, like PKC, that affect cytoskeletal and membrane dynamics. We investigated the role of MARCKS (myristoylated, alanine-rich C-kinase substrate) in dendrites of 3-week-old hippocampal cultures. MARCKS associates with membranes via the combined action of myristoylation and a polybasic effector domain, which binds phospholipids and/or F-actin, unless phosphorylated by PKC. Knockdown of endogenous MARCKS using RNAi reduced spine density and size. PKC activation induced similar effects, which were prevented by expression of a nonphosphorylatable mutant. Moreover, expression of pseudophosphorylated MARCKS was, by itself, sufficient to induce spine loss and shrinkage, accompanied by reduced F-actin content. Nonphosphorylatable MARCKS caused spine elongation and increased the mobility of spine actin clusters. Surprisingly, it also decreased spine density via a novel mechanism of spine fusion, an effect that required the myristoylation sequence. Thus, MARCKS is a key factor in the maintenance of dendritic spines and contributes to PKC-dependent morphological plasticity.
Biophysical Journal | 2002
Barbara Calabrese; Iustin V. Tabarean; Peter F. Juranka; Catherine E. Morris
Mechanosensitivity in voltage-gated calcium channels could be an asset to calcium signaling in healthy cells or a liability during trauma. Recombinant N-type channels expressed in HEK cells revealed a spectrum of mechano-responses. When hydrostatic pressure inflated cells under whole-cell clamp, capacitance was unchanged, but peak current reversibly increased ~1.5-fold, correlating with inflation, not applied pressure. Additionally, stretch transiently increased the open-state inactivation rate, irreversibly increased the closed-state inactivation rate, and left-shifted inactivation without affecting the activation curve or rate. Irreversible mechano-responses proved to be mechanically accelerated components of run-down; they were not evident in cell-attached recordings where, however, reversible stretch-induced increases in peak current persisted. T-type channels (alpha(1I) subunit only) were mechano-insensitive when expressed alone or when coexpressed with N-type channels (alpha(1B) and two auxiliary subunits) and costimulated with stretch that augmented N-type current. Along with the cell-attached results, this differential effect indicates that N-type mechanosensitivity did not depend on the recording situation. The insensitivity of T-type currents to stretch suggested that N-type mechano-responses might arise from primary/auxiliary subunit interactions. However, in single-channel recordings, N-type currents exhibited reversible stretch-induced increases in NP(o) whether the alpha(1B) subunit was expressed alone or with auxiliary subunits. These findings set the stage for the molecular dissection of calcium current mechanosensitivity.
Molecular and Cellular Neuroscience | 2007
Barbara Calabrese; Gideon M. Shaked; Tabarean; Julia Braga; Edward H. Koo; Shelley Halpain
In Alzheimers disease increasing evidence attributes synaptic and cognitive deficits to soluble oligomers of amyloid beta protein (Abeta), even prior to the accumulation of amyloid plaques, neurofibrillary tangles, and neuronal cell death. Here we show that within 1-2 h picomolar concentrations of cell-derived, soluble Abeta induce specific alterations in pre- and postsynaptic morphology and connectivity in cultured hippocampal neurons. Clusters of presynaptic vesicle markers decreased in size and number at glutamatergic but not GABAergic terminals. Dendritic spines also decreased in number and became dysmorphic, as spine heads collapsed and/or extended long protrusions. Simultaneous time-lapse imaging of axon-dendrite pairs revealed that shrinking spines sometimes became disconnected from their presynaptic varicosity. Concomitantly, miniature synaptic potentials decreased in amplitude and frequency. Spine changes were prevented by blockers of nAChRs and NMDARs. Washout of Abeta within the first day reversed these spine changes. Further, spine changes reversed spontaneously by 2 days, because neurons acutely developed resistance to continuous Abeta exposure. Thus, rapid Abeta-induced synapse destabilization may underlie transient behavioral impairments in animal models, and early cognitive deficits in Alzheimers patients.
Molecular and Cellular Neuroscience | 2007
Barbara Calabrese; Gideon M. Shaked; Iustin V. Tabarean; Julia Braga; Edward H. Koo; Shelley Halpain
In Alzheimers disease increasing evidence attributes synaptic and cognitive deficits to soluble oligomers of amyloid beta protein (Abeta), even prior to the accumulation of amyloid plaques, neurofibrillary tangles, and neuronal cell death. Here we show that within 1-2 h picomolar concentrations of cell-derived, soluble Abeta induce specific alterations in pre- and postsynaptic morphology and connectivity in cultured hippocampal neurons. Clusters of presynaptic vesicle markers decreased in size and number at glutamatergic but not GABAergic terminals. Dendritic spines also decreased in number and became dysmorphic, as spine heads collapsed and/or extended long protrusions. Simultaneous time-lapse imaging of axon-dendrite pairs revealed that shrinking spines sometimes became disconnected from their presynaptic varicosity. Concomitantly, miniature synaptic potentials decreased in amplitude and frequency. Spine changes were prevented by blockers of nAChRs and NMDARs. Washout of Abeta within the first day reversed these spine changes. Further, spine changes reversed spontaneously by 2 days, because neurons acutely developed resistance to continuous Abeta exposure. Thus, rapid Abeta-induced synapse destabilization may underlie transient behavioral impairments in animal models, and early cognitive deficits in Alzheimers patients.
PLOS ONE | 2014
Barbara Calabrese; Jean-Michel Saffin; Shelley Halpain
A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Brian Tobe; Andrew M. Crain; Alicia M. Winquist; Barbara Calabrese; Hiroko Makihara; Wen-Ning Zhao; Jasmin Lalonde; Haruko Nakamura; Glenn T. Konopaske; Michelle M. Sidor; Cameron D. Pernia; Naoya Yamashita; Moyuka Wada; Yuuka Inoue; Fumio Nakamura; Steven D. Sheridan; Ryan W. Logan; Michael Brandel; Dongmei Wu; Joshua G. Hunsberger; Laurel Dorsett; Cordulla Duerr; Ranor C. B. Basa; Michael McCarthy; Namrata D. Udeshi; Philipp Mertins; Steven A. Carr; Guy A. Rouleau; Lina Mastrangelo; Jianxue Li
Significance One-third of bipolar disorder (BPD) patients are lithium-responsive (LiR) for unknown reasons. Were lithium’s target to be identified, then BPD’s pathogenesis might be unraveled. We identified and mapped the “lithium-response pathway,” which governs the phosphorylation of CRMP2, a cytoskeleton regulator, particularly for dendritic spines: hence, a neural network modulator. Although “toggling” between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is physiologic, the “set-point” in LiR BPD is abnormal. Lithium (and other pathway-modulators) normalize that set-point. Hence, BPD is a disorder not of a gene but of the posttranslational regulation of a developmentally critical molecule. Such knowledge should enable better mechanistically based treatments and bioassays. Instructively, lithium was our “molecular can-opener” for “prying” intracellularly to reveal otherwise inscrutable pathophysiology in this complex polygenic disorder. The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithiums target and hence gain molecular insight into BPD. By profiling the proteomics of BDP–hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The “set-point” for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such “spine-opathies,” human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithiums postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the “lithium response pathway” in BPD governs CRMP2s phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent—even one whose mechanism-of-action is unknown—might reveal otherwise inscrutable intracellular pathogenic pathways.
Molecular and Cellular Neuroscience | 2007
Barbara Calabrese; Gideon M. Shaked; Iustin V. Tabarean; Julia Braga; Edward H. Koo; Shelley Halpain
In Alzheimers disease increasing evidence attributes synaptic and cognitive deficits to soluble oligomers of amyloid beta protein (Abeta), even prior to the accumulation of amyloid plaques, neurofibrillary tangles, and neuronal cell death. Here we show that within 1-2 h picomolar concentrations of cell-derived, soluble Abeta induce specific alterations in pre- and postsynaptic morphology and connectivity in cultured hippocampal neurons. Clusters of presynaptic vesicle markers decreased in size and number at glutamatergic but not GABAergic terminals. Dendritic spines also decreased in number and became dysmorphic, as spine heads collapsed and/or extended long protrusions. Simultaneous time-lapse imaging of axon-dendrite pairs revealed that shrinking spines sometimes became disconnected from their presynaptic varicosity. Concomitantly, miniature synaptic potentials decreased in amplitude and frequency. Spine changes were prevented by blockers of nAChRs and NMDARs. Washout of Abeta within the first day reversed these spine changes. Further, spine changes reversed spontaneously by 2 days, because neurons acutely developed resistance to continuous Abeta exposure. Thus, rapid Abeta-induced synapse destabilization may underlie transient behavioral impairments in animal models, and early cognitive deficits in Alzheimers patients.
Neuroreport | 2014
Barbara Calabrese; Shelley Halpain
Increasing evidence suggests that cellular stress may underlie mood disorders such as bipolar disorder and major depression, particularly as lithium and its targets can protect against neuronal cell death. Here we describe N-methyl-D-aspartate (NMDA)-induced filamentous actin reorganization (NIFAR) as a useful in-vitro model for studying acute neurocellular stress and investigating the effects of mood stabilizers. Brief incubation of cultured neurons with NMDA (50 µM, 5 min) induces marked reorganization of F-actin within the somatodendritic domain of a majority of neurons. During NIFAR, F-actin is rapidly depleted from dendritic spines and aberrantly aggregates within the dendrite shaft. The widely used mood stabilizer lithium chloride prevented NIFAR in a time-dependent and dose-dependent manner, consistent with its known efficacy in treating bipolar disorder. Inhibitors of the lithium target glycogen synthase kinase 3 and its upstream activator phosphoinositide-3-kinase also prevented NIFAR. The antidepressant compounds imipramine and fluoxetine also attenuated NIFAR. These findings have potential relevance to neuropsychiatric diseases characterized by excessive glutamate receptor activity and synaptotoxicity. We propose that protection of the dendritic actin cytoskeleton may be a common mechanism shared by various mood stabilizers.
Molecular and Cellular Neuroscience | 2015
Barbara Calabrese; Shelley Halpain
Neurons express three closely related dynamin genes. Dynamin 1 has long been implicated in the regulation of synaptic vesicle recycling in nerve terminals, and dynamins 2 and 3 were more recently shown also to contribute to synaptic vesicle recycling in specific and distinguishable ways. In cultured hippocampal neurons we found that chronic suppression of spontaneous network activity differentially regulated the targeting of endogenous dynamins 1 and 3 to nerve terminals, while dynamin 2 was unaffected. Specifically, when neural activity was chronically silenced for 1-2weeks by tetrodotoxin (TTX), the clustering of dynamin 1 at nerve terminals was reduced, while the clustering of dynamin 3 significantly increased. Moreover, dynamin 3 clustering was induced within hours by the sustained blockade of AMPA receptors, suggesting that AMPA receptors may function to prevent Dyn3 accumulation within nerve terminals. Clustering of dynamin 3 was induced by an antagonist of the calcium-dependent protein phosphatase calcineurin, but was not dependent upon intact actin filaments. TTX-induced clustering of Dyn3 occurred with a markedly slower time-course than the previously described clustering of synapsin 1. Potassium-induced depolarization rapidly de-clustered dynamin 3 from nerve terminals within minutes. These results, which have implications for homeostatic synapse restructuring, indicate that the three dynamins have evolved different regulatory mechanisms for trafficking to and from nerve terminals in response to changes in neural activity.