Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara DeNearing is active.

Publication


Featured researches published by Barbara DeNearing.


Clinical and Vaccine Immunology | 2012

The Oral, Live Attenuated Enterotoxigenic Escherichia coli Vaccine ACE527 Reduces the Incidence and Severity of Diarrhea in a Human Challenge Model of Diarrheal Disease

Michael J. Darsley; Subhra Chakraborty; Barbara DeNearing; David A. Sack; Andrea Feller; Charlotte Buchwaldt; A. Louis Bourgeois; Richard I. Walker; Clayton Harro

ABSTRACT An oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 1011 CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects. Fifty-six of these subjects were challenged 28 days after the second dose of vaccine with the highly virulent ETEC strain H10407 to obtain preliminary indicators of efficacy against disease and to support further development of the vaccine for both travelers and infants in countries where ETEC is endemic. The vaccine had a significant impact on intestinal colonization by the challenge strain, as measured by quantitative fecal culture 2 days after challenge, demonstrating the induction of a functional immune response to the CFA/I antigen. The incidence and severity of diarrhea were also reduced in vaccinees as measured by a number of secondary and ad hoc endpoints, although the 27% reduction seen in the primary endpoint, moderate to severe diarrhea, was not statistically significant. Together, these observations support the hypothesis that the ACE527 vaccine has a dual mode of action, targeting both colonization factors and the heat-labile enterotoxin (LT), and suggest that it should be further developed for more advanced trials to evaluate its impact on the burden of ETEC disease in field settings.


Clinical and Vaccine Immunology | 2011

A combination vaccine consisting of three live attenuated enterotoxigenic Escherichia coli strains expressing a range of colonization factors and heat-labile toxin subunit B is well tolerated and immunogenic in a placebo-controlled double-blind phase I trial in healthy adults.

Clayton Harro; David A. Sack; A. Louis Bourgeois; Richard I. Walker; Barbara DeNearing; Andrea Feller; Subhra Chakraborty; Charlotte Buchwaldt; Michael J. Darsley

ABSTRACT Immune responses against colonization factors (CFs) and the nontoxic B component of the enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LTB) are considered to be important for immunity against diarrhea caused by ETEC. Individual live attenuated ETEC derivatives that have had their toxin genes removed and whose aroC, ompC, and ompF genes are deleted have shown promise as vaccines against ETEC. The development of such strains has culminated in the testing of a three-strain-combination live attenuated vaccine known as ACE527, comprised of strains ACAM2025 expressing colonization factor antigen I (CFA/I) and LTB; ACAM2022, expressing CS5, CS6, and LTB; and ACAM2027, expressing CS1, CS2, CS3, and LTB. The recombinant CF and LTB genes expressed in the three strains were inserted into the bacterial chromosome to ensure their stable inheritance and expression without the requirement for any selection. ACE527 has been tested in a randomized placebo-controlled, double-blind, phase I safety and immunogenicity study in healthy adult volunteers and proved to be well tolerated and immunogenic at dose levels of 1010 and 1011 total CFU. There was no indication of strain interference on the basis of fecal shedding patterns, with all three being detected in the feces of 50% and 83% of low- and high-dose vaccine recipients, respectively. Similarly, strong immune responses to LTB and to CFs expressed on all three constituent strains were induced, with at least 50% of subjects in the high-dose group responding to LTB, CFA/I, CS3, and CS6.


Clinical and Vaccine Immunology | 2011

Refinement of a Human Challenge Model for Evaluation of Enterotoxigenic Escherichia coli Vaccines

Clayton Harro; Subhra Chakraborty; Andrea Feller; Barbara DeNearing; Alicia Cage; Malathi Ram; Anna Lundgren; Ann-Mari Svennerholm; August L. Bourgeois; Richard I. Walker; David A. Sack

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strain H10407 (serotype O78:H11 producing heat-labile toxin [LT], heat-stable toxin [ST], and colonization factor I [CFA/I]) induces reliably high diarrheal attack rates (ARs) in a human challenge model at doses of ≥109 CFU. A descending-dose challenge study was conducted with changes to the standard fasting time and buffer formulation, seeking conditions that permit lower inocula while maintaining reproducibly high ARs. In cohort 1, 20 subjects were fasted overnight and randomized 1:1:1:1 to receive H10407 at doses of 108 CFU with bicarbonate, 108 CFU with CeraVacx, 107 CFU with bicarbonate, or 107 CFU with CeraVacx. Subsequent cohorts received H10407 (107 CFU with bicarbonate) with similar fasting conditions. Cohort 2 included 15 ETEC-naïve volunteers. Cohort 3 included 10 ETEC-naïve volunteers and 10 rechallenged volunteers. In all, 25/35 (71%) ETEC-naïve recipients of 107 CFU of H10407 developed moderate or severe diarrhea (average maximum stool output/24 h = 1,042 g), and most (97%) shed H10407 (maximum geometric mean titer = 7.5 × 107 CFU/gram of stool). Only one of 10 rechallenged volunteers developed diarrhea. These rechallenged subjects had reduced intestinal colonization, reflected by quantitative microbiology of fecal samples. Among the 35 ETEC-naïve subjects, anti-lipopolysaccharide (LPS) O78 serum antibody responses were striking, with positive IgA and IgG antibody responses in 33/35 (94%) and 25/35 (71%), respectively. Anti-heat-labile enterotoxin (LTB) serum IgA and IgG responses developed in 19/35 (54%) and 14/35 (40%) subjects, respectively. Anti-CFA/I serum IgA and IgG responses were detected in 15/35 (43%) and 8/35 (23%) subjects. After the second challenge, participants exhibited blunted anti-LPS and -LTB responses but a booster response to CFA/I. This ETEC model should prove useful in the future evaluation of ETEC vaccine candidates.


Clinical and Vaccine Immunology | 2016

Characterization of Mucosal Immune Responses to Enterotoxigenic Escherichia coli Vaccine Antigens in a Human Challenge Model: Response Profiles after Primary Infection and Homologous Rechallenge with Strain H10407

Subhra Chakraborty; Clayton Harro; Barbara DeNearing; Malathi Ram; Andrea Feller; Alicia Cage; Nicole Bauers; A. Louis Bourgeois; Richard I. Walker; David A. Sack

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) bacteria are the most common bacterial cause of diarrhea in children in resource-poor settings as well as in travelers. Although there are several approaches to develop an effective vaccine for ETEC, no licensed vaccines are currently available. A significant challenge to successful vaccine development is our poor understanding of the immune responses that correlate best with protection against ETEC illness. In this study, ETEC-specific mucosal immune responses were characterized and compared in subjects challenged with ETEC strain H10407 and in subjects rechallenged with the homologous organism. IgA responses to lipopolysaccharide (LPS), heat-labile toxin B subunit (LTB), and colonization factor antigen I (CFA/I) in antibody in lymphocyte supernatant (ALS), feces, lavage fluid, and saliva samples were evaluated. In all assay comparisons, ALS was the most sensitive indicator of a local immune response, but serum IgA was also a useful indirect marker of immune response to oral antigens. Volunteers challenged and then rechallenged with strain H10407 were protected from illness following rechallenge. Comparing mucosal antibody responses after primary and homologous rechallenge, protection against disease was reflected in reduced antibody responses to key ETEC antigens and in reduced fecal shedding of the H10407 challenge strain. Subjects challenged with strain H10407 mounted stronger antibody responses to LPS and LTB than subjects in the rechallenge group, while responses to CFA/I in the rechallenge group were higher than in the challenge group. We anticipate that this study will help provide an immunological benchmark for the evaluation of ETEC vaccines and immunization regimens in the future.


PLOS ONE | 2016

An Evidenced-Based Scale of Disease Severity following Human Challenge with Enteroxigenic Escherichia coli

Chad K. Porter; Mark S. Riddle; Ashley N. Alcala; David A. Sack; Clayton Harro; Subhra Chakraborty; Ramiro L. Gutierrez; Stephen J. Savarino; Michael J. Darsley; Robin McKenzie; Barbara DeNearing; Hans Steinsland; David R. Tribble; A. Louis Bourgeois

Background Experimental human challenge models have played a major role in enhancing our understanding of infectious diseases. Primary outcomes have typically utilized overly simplistic outcomes that fail to entirely account for complex illness syndromes. We sought to characterize clinical outcomes associated with experimental infection with enterotoxigenic Escherichia coli (ETEC) and to develop a disease score. Methods Data were obtained from prior controlled human ETEC infection studies. Correlation and univariate regression across sign and symptom severity was performed. A multiple correspondence analysis was conducted. A 3-parameter disease score with construct validity was developed in an iterative fashion, compared to standard outcome definitions and applied to prior vaccine challenge trials. Results Data on 264 subjects receiving seven ETEC strains at doses from 1x105 to 1x1010 cfu were used to construct a standardized dataset. The strongest observed correlation was between vomiting and nausea (r = 0.65); however, stool output was poorly correlated with subjective activity-impacting outcomes. Multiple correspondence analyses showed covariability in multiple signs and symptoms, with severity being the strongest factor corresponding across outcomes. The developed disease score performed well compared to standard outcome definitions and differentiated disease in vaccinated and unvaccinated subjects. Conclusion Frequency and volumetric definitions of diarrhea severity poorly characterize ETEC disease. These data support a disease severity score accounting for stool output and other clinical signs and symptoms. Such a score could serve as the basis for better field trial outcomes and gives an additional outcome measure to help select future vaccines that warrant expanded testing in pivotal pre-licensure trials.


Clinical and Vaccine Immunology | 2016

Evaluation of the Safety, Tolerability, and Immunogenicity of an Oral, Inactivated Whole-Cell Shigella flexneri 2a Vaccine in Healthy Adult Subjects

Subhra Chakraborty; Clayton Harro; Barbara DeNearing; Jay H. Bream; Nicole Bauers; Len Dally; Lillian Van De Verg; David A. Sack; Richard I. Walker

ABSTRACT Shigella causes high morbidity and mortality worldwide, but there is no licensed vaccine for shigellosis yet. We evaluated the safety and immunogenicity of a formalin-inactivated whole-cell Shigella flexneri 2a vaccine, Sf2aWC, given orally to adult volunteers. In a double-blind, placebo-controlled trial, 82 subjects were randomized to receive three doses of vaccine in dose escalation (2.6 ± 0.8 × 108, × 109, × 1010, and × 1011 vaccine particles/ml). Vaccine safety was actively monitored, and antigen-specific systemic and mucosal immune responses were determined in serum, antibody in lymphocyte supernatant (ALS), and fecal samples. Cytokines were measured in the serum. Sf2aWC was well tolerated and generally safe at all four dose levels. The vaccine resulted in a dose-dependent immune response. At the highest dose, the vaccine induced robust responses to lipopolysaccharide (LPS) in both serum and ALS samples. The highest magnitude and frequency of responses occurred after the first dose in almost all samples but was delayed for IgG in serum. Fifty percent of the vaccinees had a >4-fold increase in anti-LPS fecal antibody titers. Responses to invasion plasmid antigens (Ipa) were low. The levels of interleukin-17 (IL-17), IL-2, gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-10 were increased, and IL-8 was decreased immediately after first dose, but these changes were very transient. This phase I trial demonstrated that the Sf2aWC vaccine, a relatively simple vaccine concept, was safe and immunogenic. The vaccine elicited immune responses which were comparable to those induced by a live, attenuated Shigella vaccine that was protective in prior human challenge studies.


Nature microbiology | 2018

Campylobacter jejuni transcriptional and genetic adaptation during human infection

Alexander A. Crofts; Frédéric Poly; Cheryl P. Ewing; Janelle Kuroiwa; Joanna E. Rimmer; Clayton Harro; David A. Sack; Kawsar R. Talaat; Chad K. Porter; Ramiro L. Gutierrez; Barbara DeNearing; Jessica Brubaker; Renée M. Laird; Alexander C. Maue; Kayla Jaep; Ashley N. Alcala; David R. Tribble; Mark S. Riddle; Amritha Ramakrishnan; Andrea McCoy; Bryan W. Davies; Patricia Guerry; M. Stephen Trent

Campylobacter jejuni infections are a leading cause of bacterial food-borne diarrhoeal illness worldwide, and Campylobacter infections in children are associated with stunted growth and therefore long-term deficits into adulthood. Despite this global impact on health and human capital, how zoonotic C. jejuni responds to the human host remains unclear. Unlike other intestinal pathogens, C. jejuni does not harbour pathogen-defining toxins that explicitly contribute to disease in humans. This makes understanding Campylobacter pathogenesis challenging and supports a broad examination of bacterial factors that contribute to C. jejuni infection. Here, we use a controlled human infection model to characterize C. jejuni transcriptional and genetic adaptations in vivo, along with a non-human primate infection model to validate our approach. We found that variation in 11 genes is associated with either acute or persistent human infections and includes products involved in host cell invasion, bile sensing and flagella modification, plus additional potential therapeutic targets. In particular, a functional version of the cell invasion protein A (cipA) gene product is strongly associated with persistently infecting bacteria and we identified its biochemical role in flagella modification. These data characterize the adaptive C. jejuni response to primate infections and suggest therapy design should consider the intrinsic differences between acute and persistently infecting bacteria. In addition, RNA sequencing revealed conserved responses during natural host commensalism and human infections. Thirty-nine genes were differentially regulated in vivo across hosts, lifestyles and C. jejuni strains. This conserved in vivo response highlights important C. jejuni survival mechanisms such as iron acquisition and evasion of the host mucosal immune response. These advances highlight pathogen adaptability across host species and demonstrate the utility of multidisciplinary collaborations in future clinical trials to study pathogens in vivo.A human challenge trial with Campylobacter jejuni uncovers transcriptional and genomic changes during infection, highlighting pathogen factors associated with acute and persistent infection.


The Journal of Infectious Diseases | 2017

Prophylactic Efficacy of Hyperimmune Bovine Colostral Antiadhesin Antibodies Against Enterotoxigenic Escherichia coli Diarrhea: A Randomized, Double-Blind, Placebo-Controlled, Phase 1 Trial

Stephen J. Savarino; Robin McKenzie; David R. Tribble; Chad K. Porter; Aisling O’Dowd; Joyce A. Cantrell; Stephanie A. Sincock; Steven Poole; Barbara DeNearing; Colleen M. Woods; Hye Kim; Shannon L. Grahek; Carl Brinkley; Joseph H. Crabb; A. Louis Bourgeois

Background Tip-localized adhesive proteins of bacterial fimbriae from diverse pathogens confer protection in animal models, but efficacy in humans has not been reported. Enterotoxigenic Escherichia coli (ETEC) commonly elaborate colonization factors comprising a minor tip adhesin and major stalk-forming subunit. We assessed the efficacy of antiadhesin bovine colostral IgG (bIgG) antibodies against ETEC challenge in volunteers. Methods Adults were randomly assigned (1:1:1) to take oral hyperimmune bIgG raised against CFA/I minor pilin subunit (CfaE) tip adhesin or colonization factor I (CFA/I) fimbraie (positive control) or placebo. Two days before challenge, volunteers began a thrice-daily, 7-day course of investigational product administered in sodium bicarbonate 15 minutes after each meal. On day 3, subjects drank 1 × 109 colony-forming units of colonization factor I (CFA/I)-ETEC strain H10407 with buffer. The primary efficacy endpoint was diarrhea within 120 hours of challenge. Results After enrollment and randomization, 31 volunteers received product, underwent ETEC challenge, and were included in the per protocol efficacy analysis. Nine of 11 placebos developed diarrhea, 7 experiencing moderate to severe disease. Protective efficacy of 63% (P = .03) and 88% (P = .002) was observed in the antiadhesin bIgG and positive control groups, respectively. Conclusions Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.


The Journal of Infectious Diseases | 2011

Volunteer Challenge With Enterotoxigenic Escherichia coli That Express Intestinal Colonization Factor Fimbriae CS17 and CS19

Robin McKenzie; Chad K. Porter; Joyce A. Cantrell; Barbara DeNearing; Aisling O’Dowd; Shannon L. Grahek; Stephanie A. Sincock; Colleen M. Woods; Peter J. Sebeny; David A. Sack; David R. Tribble; A. Louis Bourgeois; Stephen J. Savarino

Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 10(9) organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 10(9) organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials.


The Journal of Infectious Diseases | 2018

Human Experimental Challenge With Enterotoxigenic Escherichia coli Elicits Immune Responses to Canonical and Novel Antigens Relevant to Vaccine Development

Subhra Chakraborty; Arlo Randall; Tim J. Vickers; Doug Molina; Clayton Harro; Barbara DeNearing; Jessica Brubaker; David A. Sack; A. Louis Bourgeois; Philip L. Felgner; Xiaowu Liang; Sachin Mani; Heather Wenzel; R. Reid Townsend; Petra Gilmore; Michael J. Darsley; David A. Rasko; James M. Fleckenstein

Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. Enterotoxigenic E coli vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Methods Antibody lymphocyte supernatants (ALS) and sera from 20 naive human volunteers challenged with ETEC strain H10407 and from 10 volunteers rechallenged 4-6 weeks later with the same strain (9 of whom were completely protected on rechallenge) were tested against ETEC proteome microarrays containing 957 antigens. Results Enterotoxigenic E coli challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E coli antigens including YghJ, flagellin, and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Conclusions Taken together, studies reported here suggest that immune responses after ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.

Collaboration


Dive into the Barbara DeNearing's collaboration.

Top Co-Authors

Avatar

Clayton Harro

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Sack

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard I. Walker

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Chad K. Porter

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Mark S. Riddle

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Ramiro L. Gutierrez

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

A. Louis Bourgeois

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrea Feller

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge