Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara H. Rath is active.

Publication


Featured researches published by Barbara H. Rath.


PLOS ONE | 2013

Astrocytes Enhance the Invasion Potential of Glioblastoma Stem-Like Cells

Barbara H. Rath; Joshlean M. Fair; Muhammad Jamal; Kevin Camphausen; Philip J. Tofilon

Glioblastomas (GBMs) are characterized as highly invasive; the contribution of GBM stem-like cells (GSCs) to the invasive phenotype, however, has not been completely defined. Towards this end, we have defined the invasion potential of CD133+ GSCs and their differentiated CD133− counterparts grown under standard in vitro conditions and in co-culture with astrocytes. Using a trans-well assay, astrocytes or astrocyte conditioned media in the bottom chamber significantly increased the invasion of GSCs yet had no effect on CD133− cells. In addition, a monolayer invasion assay showed that the GSCs invaded farther into an astrocyte monolayer than their differentiated progeny. Gene expression profiles were generated from two GSC lines grown in trans-well culture with astrocytes in the bottom chamber or directly in contact with astrocyte monolayers. In each co-culture model, genes whose expression was commonly increased in both GSC lines involved cell movement and included a number of genes that have been previously associated with tumor cell invasion. Similar gene expression modifications were not detected in CD133− cells co-cultured under the same conditions with astrocytes. Finally, evaluation of the secretome of astrocytes grown in monolayer identified a number of chemokines and cytokines associated with tumor cell invasion. These data suggest that astrocytes enhance the invasion of CD133+ GSCs and provide additional support for a critical role of brain microenvironment in the regulation of GBM biology.


Clinical Cancer Research | 2010

Microenvironmental regulation of glioblastoma radioresponse

Muhammad Jamal; Barbara H. Rath; Eli S. Williams; Kevin Camphausen; Philip J. Tofilon

Purpose: Brain tumor xenografts initiated from human glioblastoma (GBM) stem-like cells (TSC) simulate the biological characteristics of GBMs in situ. Therefore, to determine whether the brain microenvironment affects the intrinsic radiosensitivity of GBM cells, we compared the radioresponse of GBM TSCs grown in vitro and as brain tumor xenografts. Experimental Design: As indicators of DNA double-strand breaks (DSB), γH2AX, and 53BP1 foci were defined after irradiation of 2 GBM TSC lines grown in vitro and as orthotopic xenografts in nude mice. Microarray analysis was conducted to compare gene expression patterns under each growth condition. Results: Dispersal of radiation-induced γH2AX and 53BP1 foci was faster in the tumor cells grown as orthotopic xenografts compared with cells irradiated in vitro. In addition, cells irradiated in vivo were approximately 3-fold less susceptible to foci induction as compared with cells grown in vitro. Microarray analysis revealed a significant number of genes whose expression was commonly affected in the 2 GBM models by orthotopic growth conditions. Consistent with the decrease in sensitivity to foci induction, genes related to reactive oxygen species (ROS) metabolism were expressed at higher levels in the brain tumor xenografts. Conclusion: γH2AX and 53BP1 foci analyses indicate that GBM cells irradiated within orthotopic xenografts have a greater capacity to repair DSBs and are less susceptible to their induction than tumor cells irradiated under in vitro growth conditions. Because DSB induction and repair are critical determinants of radiosensitivity, these results imply that the brain microenvironment contributes to GBM radioresistance.Clin Cancer Res; 16(24); 6049–59. ©2010 AACR.


Neuro-oncology | 2014

The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells

Jenna Kahn; Thomas J. Hayman; Muhammad Jamal; Barbara H. Rath; Tamalee Kramp; Kevin Camphausen; Philip J. Tofilon

BACKGROUND The mammalian target of rapamycin (mTOR) has been suggested as a target for radiosensitization. Given that radiotherapy is a primary treatment modality for glioblastoma (GBM) and that mTOR is often dysregulated in GBM, the goal of this study was to determine the effects of AZD2014, a dual mTORC1/2 inhibitor, on the radiosensitivity of GBM stem-like cells (GSCs). METHODS mTORC1 and mTORC2 activities were defined by immunoblot analysis. The effects of this mTOR inhibitor on the in vitro radiosensitivity of GSCs were determined using a clonogenic assay. DNA double strand breaks were evaluated according to γH2AX foci. Orthotopic xenografts initiated from GSCs were used to define the in vivo response to AZD2014 and radiation. RESULTS Exposure of GSCs to AZD2014 resulted in the inhibition of mTORC1 and 2 activities. Based on clonogenic survival analysis, addition of AZD2014 to culture media 1 hour before irradiation enhanced the radiosensitivity of CD133+ and CD15+ GSC cell lines. Whereas AZD2014 treatment had no effect on the initial level of γH2AX foci, the dispersal of radiation-induced γH2AX foci was significantly delayed. Finally, the combination of AZD2014 and radiation delivered to mice bearing GSC-initiated orthotopic xenografts significantly prolonged survival as compared with the individual treatments. CONCLUSIONS These data indicate that AZD2014 enhances the radiosensitivity of GSCs both in vitro and under orthotopic in vivo conditions and suggest that this effect involves an inhibition of DNA repair. Moreover, these results suggest that this dual mTORC1/2 inhibitor may be a radiosensitizer applicable to GBM therapy.


Clinical Cancer Research | 2014

The ATP-Competitive mTOR Inhibitor INK128 Enhances In Vitro and In Vivo Radiosensitivity of Pancreatic Carcinoma Cells

Thomas J. Hayman; Amy Wahba; Barbara H. Rath; Heekyong Bae; Tamalee Kramp; Uma Shankavaram; Kevin Camphausen; Philip J. Tofilon

Purpose: Radiotherapy remains a primary treatment modality for pancreatic carcinoma, a tumor characterized by aberrant mTOR activity. Given the regulatory role of mTOR in gene translation, in this study, we defined the effects of the clinically relevant, ATP-competitive mTOR inhibitor, INK128 on the radiosensitivity of pancreatic carcinoma cell lines. Experimental Design: Clonogenic survival was used to determine the effects of INK128 on in vitro radiosensitivity of three pancreatic carcinoma cell lines and a normal fibroblast cell line with mTOR activity defined using immunoblots. DNA double-strand breaks were evaluated according to γH2AX foci. The influence of INK128 on radiation-induced gene translation was determined by microarray analysis of polysome-bound mRNA. Leg tumor xenografts grown from pancreatic carcinoma cells were evaluated for mTOR activity, eIF4F cap complex formation, and tumor growth delay. Results: INK128, while inhibiting mTOR activity in each of the cell lines, enhanced the in vitro radiosensitivity of the pancreatic carcinoma cells but had no effect on normal fibroblasts. The dispersal of radiation-induced γH2AX foci was inhibited in pancreatic carcinoma cells by INK128 as were radiation-induced changes in gene translation. Treatment of mice with INK128 resulted in an inhibition of mTOR activity as well as cap complex formation in tumor xenografts. Whereas INK128 alone had no effect of tumor growth rate, it enhanced the tumor growth delay induced by single and fractionated doses of radiation. Conclusion: These results indicate that mTOR inhibition induced by INK128 enhances the radiosensitivity of pancreatic carcinoma cells and suggest that this effect involves the inhibition of DNA repair. Clin Cancer Res; 20(1); 110–9. ©2013 AACR.


Cancer Medicine | 2015

Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization.

Barbara H. Rath; Amy Wahba; Kevin Camphausen; Philip J. Tofilon

Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem‐like cells (GSCs) were grown in coculture with human astrocytes. Using a trans‐well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation‐induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double‐strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine‐based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte‐mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization.


Cell Adhesion & Migration | 2016

Small cell lung cancer: Circulating tumor cells of extended stage patients express a mesenchymal-epithelial transition phenotype

Gerhard Hamilton; Maximilian Hochmair; Barbara H. Rath; Lukas Klameth; Robert Zeillinger

ABSTRACT Small cell lung cancer (SCLC) is distinguished by aggressive growth, early dissemination and a poor prognosis at advanced stage. The remarkably high count of circulating tumor cells (CTCs) of SCLC allowed for the establishment of permanent CTC cultures at our institution for the first time. CTCs are assumed to have characteristics of cancer stem cells (CSCs) and an epithelial-mesenchymal transition (EMT) phenotype, but extravasation of tumors at distal sites is marked by epithelial features. Two SCLC CTC cell lines, namely BHGc7 and BHGc10, as well as SCLC cell lines derived from primary tumors and metastases were analyzed for the expression of pluripotent stem cell markers and growth factors. Expression of E-cadherin and β-Catenin were determined by flow cytometry. Stem cell-associated markers SOX17, α-fetoprotein, OCT-3/4, KDR, Otx2, GATA-4, Nanog, HCG, TP63 and Goosecoid were not expressed in the 2 CTC lines. In contrast, high expression was found for HNF-3β/FOXA2, SOX2, PDX-1/IPF1 and E-cadherin. E-cadherin expression was restricted to the 2 CTCs and 2 cell lines derived from pleural effusion (SCLC26A) and bone metastases (NCI-H526), respectively. Thus, these SCLC CTCs established from extended disease SCLC patients lack expression of stem cell markers which suppress the epithelial phenotype. Instead they express high levels of E-cadherin consistent with a mesenchymal-epithelial transition (MET or EMrT) and form large tumorospheres possibly in response to the selection pressure of first-line chemotherapy. HNF-3β/FOXA2 and PDX-1/IPF1 expression seem to be related to growth factor dependence on insulin/IGF-1 receptors and IGF-binding proteins.


Cancer Research | 2016

Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells

Amy Wahba; Barbara H. Rath; Kheem S. Bisht; Kevin Camphausen; Philip J. Tofilon

Changes in polysome-bound mRNA (translatome) are correlated closely with changes in the proteome in cells. Therefore, to better understand the processes mediating the response of glioblastoma to ionizing radiation (IR), we used polysome profiling to define the IR-induced translatomes of a set of human glioblastoma stem-like cell (GSC) lines. Although cell line specificity accounted for the largest proportion of genes within each translatome, there were also genes that were common to the GSC lines. In particular, analyses of the IR-induced common translatome identified components of the DNA damage response, consistent with a role for the translational control of gene expression in cellular radioresponse. Moreover, translatome analyses suggested that IR enhanced cap-dependent translation processes, an effect corroborated by the finding of increased eIF4F-cap complex formation detected after irradiation in all GSC lines. Translatome analyses also predicted that Golgi function was affected by IR. Accordingly, Golgi dispersal was detected after irradiation of each of the GSC lines. In addition to the common responses seen, translatome analyses predicted cell line-specific changes in mitochondria, as substantiated by changes in mitochondrial mass and DNA content. Together, these results suggest that analysis of radiation-induced translatomes can provide new molecular insights concerning the radiation response of cancer cells. More specifically, they suggest that the translational control of gene expression may provide a source of molecular targets for glioblastoma radiosensitization. Cancer Res; 76(10); 3078-87. ©2016 AACR.


Translational lung cancer research | 2017

Circulating tumor cell interactions with macrophages: implications for biology and treatment

Gerhard Hamilton; Barbara H. Rath

Cancer and metastasis are closely associated with inflammation. Macrophages are important effector cells in enhancing tumor proliferation, invasion and providing protection against the immune system. Despite advanced knowledge of tumor-macrophage interactions, the role of macrophages in emergence and invasion of circulating tumor cells (CTCs) is not known. A series of six CTC cell lines have been derived from blood of patients with extensive disease small cell lung cancer (ED-SCLC) in our lab, most likely representing a homogenous cell population of the actual metastasis-initiating cells (MIC) of CTCs. SCLC has an unfavorable prognosis due to rapid dissemination and early chemoresistant relapses. SCLC CTCs recruit macrophages and elicit secretion of various cytokines and the six CTC lines express chitinase-3-like-1 (CHI3L1), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) in abundance. CHI3L1 is cytokine/growth factor expressed in inflammation and cancer and found to be correlated to metastasis and a dismal prognosis. In conclusion, SCLC CTCs have acquired the essential means for aggressiveness and invasion in a tumor microenvironment specifically shaped by macrophages and inflammation.


Molecular Cancer Therapeutics | 2017

Exploiting radiation-induced signaling to increase the susceptibility of resistant cancer cells to targeted drugs: AKT and mTOR inhibitors as an example

Iris Eke; Adeola Y. Makinde; Molykutty J. Aryankalayil; Veit Sandfort; Sanjeewani T. Palayoor; Barbara H. Rath; Lance A. Liotta; Mariaelena Pierobon; Emanuel F. Petricoin; Matthew F. Brown; Jayne M. Stommel; Mansoor M. Ahmed; C. Norman Coleman

Implementing targeted drug therapy in radio-oncologic treatment regimens has greatly improved the outcome of cancer patients. However, the efficacy of molecular targeted drugs such as inhibitory antibodies or small molecule inhibitors essentially depends on target expression and activity, which both can change during the course of treatment. Radiotherapy has previously been shown to activate prosurvival pathways, which can help tumor cells to adapt and thereby survive treatment. Therefore, we aimed to identify changes in signaling induced by radiation and evaluate the potential of targeting these changes with small molecules to increase the therapeutic efficacy on cancer cell survival. Analysis of “The Cancer Genome Atlas” database disclosed a significant overexpression of AKT1, AKT2, and MTOR genes in human prostate cancer samples compared with normal prostate gland tissue. Multifractionated radiation of three-dimensional–cultured prostate cancer cell lines with a dose of 2 Gy/day as a clinically relevant schedule resulted in an increased protein phosphorylation and enhanced protein–protein interaction between AKT and mTOR, whereas gene expression of AKT, MTOR, and related kinases was not altered by radiation. Similar results were found in a xenograft model of prostate cancer. Pharmacologic inhibition of mTOR/AKT signaling after activation by multifractionated radiation was more effective than treatment prior to radiotherapy. Taken together, our findings provide a proof-of-concept that targeting signaling molecules after activation by radiotherapy may be a novel and promising treatment strategy for cancers treated with multifractionated radiation regimens such as prostate cancer to increase the sensitivity of tumor cells to molecular targeted drugs. Mol Cancer Ther; 17(2); 355–67. ©2017 AACR. See all articles in this MCT Focus section, “Developmental Therapeutics in Radiation Oncology.”


Advances in Experimental Medicine and Biology | 2017

Mesenchymal-Epithelial Transition and Circulating Tumor Cells in Small Cell Lung Cancer

Gerhard Hamilton; Barbara H. Rath

Cancer patients die of metastatic disease but knowledge regarding individual steps of this complex process of intravasation, spread and extravasation leading to secondary lesions is incomplete. Subpopulations of tumor cells are supposed to undergo an epithelial-mesenchymal transition (EMT), to enter the bloodstream and eventually establish metastases in a reverse process termed mesenchymal-epithelial transition (MET). Small cell lung cancer (SCLC) represents a unique model to study metastatic spread due to early dissemination and relapse, as well as availability of a panel of circulating cancer cell (CTC) lines recently. Additionally, chemosensitive SCLC tumor cells switch to a completely resistant phenotype during cancer recurrence. In advanced disease, SCLC patients display extremely high blood counts of CTCs in contrast to other tumors, like breast, prostate and colon cancer. Local inflammatory conditions at the primary tumor site and recruitment of macrophages seem to increase the shedding of tumor cells into the circulation in processes which may proceed independently of EMT. Since millions of cells are released by tumors into the circulation per day, analysis of a limited number of CTCs at specific time points are difficult to be related to the development of metastatic lesions which may occur approximately one year later. We have obtained a panel of SCLC CTC cell line from patients with relapsing disease, which share characteristic markers of this malignancy and a primarily epithelial phenotype with unique formation of large tumorospheres, containing quiescent and hypoxic cells. Although smoking and inflammation promote EMT, partial expression of vimentin indicates a transitional state with partial EMT in these cell lines at most. The CTC lines exhibit high expression of EpCAM , absent phosphorylation of β-catenin and background levels of Snail. Provided that these tumor cells had ever undergone EMT, here in advanced disease MET seem to have occurred already in the peripheral circulation. Alternative explanations for the expression of mesenchymal markers of the CTC lines are the heterogeneity of SCLC cells, cooperative migration or altered gene expression in response to the inflammatory tumor microenvironment allowing for tumor spread without EMT/MET.

Collaboration


Dive into the Barbara H. Rath's collaboration.

Top Co-Authors

Avatar

Kevin Camphausen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Philip J. Tofilon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gerhard Hamilton

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Muhammad Jamal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tamalee Kramp

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lukas Klameth

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Hayman

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Adeola Y. Makinde

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anita Tandle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

C. Norman Coleman

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge