Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara J. Mahler is active.

Publication


Featured researches published by Barbara J. Mahler.


Journal of Hydrology | 2000

Transport of free and particulate-associated bacteria in karst

Barbara J. Mahler; J.‐C. Personné; G.F Lods; C. Drogue

Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst.


Chemosphere | 2003

The contribution of particles washed from rooftops to contaminant loading to urban streams

P.C. Van Metre; Barbara J. Mahler

Rooftops are both a source of and a pathway for contaminated runoff in urban environments. To investigate the importance of particle-associated contamination in rooftop runoff, particles washed from asphalt shingle and galvanized metal roofs at sites 12 and 102 m from a major expressway were analyzed for major and trace elements and PAHs. Concentrations and yields from rooftops were compared among locations and roofing material types and to loads monitored during runoff events in the receiving urban stream to evaluate rooftop sources and their potential contribution to stream loading. Concentrations of zinc, lead, pyrene, and chrysene on a mass per mass basis in a majority of rooftop samples exceeded established sediment quality guidelines for probable toxicity of bed sediments to benthic biota. Fallout near the expressway was greater than farther away, as indicated by larger yields of all contaminants investigated, although some concentrations were lower. Metal roofing was a source of cadmium and zinc and asphalt shingles a source of lead. The contribution of rooftop washoff to watershed loading was estimated to range from 6 percent for chromium and arsenic to 55 percent for zinc. Estimated contributions from roofing material to total watershed load were greatest for zinc and lead, contributing about 20 and 18 percent, respectively. The contribution from atmospheric deposition of particles onto rooftops to total watershed loads in stormwater was estimated to be greatest for mercury, contributing about 46 percent.


Science of The Total Environment | 2010

Contribution of PAHs from coal–tar pavement sealcoat and other sources to 40 U.S. lakes

Peter C. Van Metre; Barbara J. Mahler

Contamination of urban lakes and streams by polycyclic aromatic hydrocarbons (PAHs) has increased in the United States during the past 40 years. We evaluated sources of PAHs in post-1990 sediments in cores from 40 lakes in urban areas across the United States using a contaminant mass-balance receptor model and including as a potential source coal-tar-based (CT) sealcoat, a recently recognized source of urban PAH. Other PAH sources considered included several coal- and vehicle-related sources, wood combustion, and fuel-oil combustion. The four best modeling scenarios all indicate CT sealcoat is the largest PAH source when averaged across all 40 lakes, contributing about one-half of PAH in sediment, followed by vehicle-related sources and coal combustion. PAH concentrations in the lakes were highly correlated with PAH loading from CT sealcoat (Spearmans rho=0.98), and the mean proportional PAH profile for the 40 lakes was highly correlated with the PAH profile for dust from CT-sealed pavement (r=0.95). PAH concentrations and mass and fractional loading from CT sealcoat were significantly greater in the central and eastern United States than in the western United States, reflecting regional differences in use of different sealcoat product types. The model was used to calculate temporal trends in PAH source contributions during the last 40 to 100 years to eight of the 40 lakes. In seven of the lakes, CT sealcoat has been the largest source of PAHs since the 1960s, and in six of those lakes PAH trends are upward. Traffic is the largest source to the eighth lake, located in southern California where use of CT sealcoat is rare.


Journal of Hydrology | 1999

Muddy waters: temporal variation in sediment discharging from a karst spring

Barbara J. Mahler; F. Leo Lynch

Karst aquifers are capable of transporting and discharging large quantities of suspended sediment, which can have an important impact on water quality. Here we present the results of intensive monitoring of sediment discharging from a karst spring in response to two storm events, one following a wet season and the other following a dry season; we describe temporal changes in total suspended solids (TSS), mineralogy, and particle size distribution. Peak concentrations of suspended sediment coincided with changes in aqueous chemistry indicating arrival of surface water, suggesting that much of the discharging sediment had an allochthonous origin. Concentrations of suspended sediment peaked 14‐16 h after rainfall, and the bulk of the sediment (approximately 1 metric ton in response to each storm) discharged within 24 h after rainfall. Filtered material included brightly colored fibers and organic matter. Suspended sediments consisted of dolomite, calcite, quartz, and clay. Proportions of each mineral constituent changed as the aquifer response to the storm progressed, indicating varying input from different sediment sources. The hydraulic response of the aquifer to precipitation was well described by changes in parameters obtained from the particle size distribution function, and corresponded to changes seen in TSS and mineralogy. Differences between storms in the quantity and mineralogy of sediment transported suggest that seasonal effects on surface sediment supply may be important. The quantity of sediment discharging and its potential to sorb and transport contaminants indicates that a mobile solid phase should be included in contaminant monitoring and contaminant transport models of karst. Temporal changes in sediment quantity and characteristics and differences between responses to the two storms, however, demonstrate that the process is not easily generalized. q 1999 Elsevier Science B.V. All rights reserved.


Environmental Toxicology and Chemistry | 2006

Trends in metals in urban and reference lake sediments across the United States, 1970 to 2001

Barbara J. Mahler; Peter C. Van Metre; Edward Callender

Trends in metals concentrations in sediment cores from 35 reservoirs and lakes in urban and reference settings were analyzed to determine the effects of three decades of legislation, regulation, and changing demographics and industrial practices in the United States on concentrations of metals in the environment. Decreasing trends outnumber increasing trends for all seven metals analyzed (Cd, Cr, Cu, Pb, Hg, Ni, and Zn). The most consistent trends are for Pb and Cr: For Pb, 83% of the lakes have decreasing trends and 6% have increasing trends; for Cr, 54% of the lakes have decreasing trends and none have increasing trends. Mass accumulation rates of metals in cores, adjusted for background concentrations, decrease from the 1970s to the 1990s, with median changes ranging from -46% (Pb) to -3% (Hg and Zn). The largest decreases are from lakes in dense urban watersheds where the overall metals contamination in recently deposited sediments has decreased to one-half its 1970s median value. However, anthropogenic mass accumulation rates in dense urban lakes remain elevated over those in lakes in undeveloped watersheds, in some cases by as much as two orders of magnitude (Cr, Cu, and Zn), indicating that urban fluvial source signals can overwhelm those from regional atmospheric sources.


Environmental Science & Technology | 2012

Coal-Tar-Based Pavement Sealcoat and PAHs: Implications for the Environment, Human Health, and Stormwater Management

Barbara J. Mahler; Peter C. Van Metre; Judy L. Crane; Alison Watts; Mateo Scoggins; E. Spencer Williams

Coal-tar-based sealcoat products, widely used in the central and eastern U.S. on parking lots, driveways, and even playgrounds, are typically 20−35% coal-tar pitch, a known human carcinogen that contains about 200 polycyclic aromatic hydrocarbon (PAH) compounds. Research continues to identify environmental compartments—including stormwater runoff, lake sediment, soil, house dust, and most recently, air—contaminated by PAHs from coal-tar-based sealcoat and to demonstrate potential risks to biological communities and human health. In many cases, the levels of contamination associated with sealed pavement are striking relative to levels near unsealed pavement: PAH concentrations in air over pavement with freshly applied coal-tar-based sealcoat, for example, were hundreds to thousands of times higher than those in air over unsealed pavement. Even a small amount of sealcoated pavement can be the dominant source of PAHs to sediment in stormwater-retention ponds; proper disposal of such PAH-contaminated sediment can be extremely costly. Several local governments, the District of Columbia, and the State of Washington have banned use of these products, and several national and regional hardware and home-improvement retailers have voluntarily ceased selling them.


Environmental Science & Technology | 2010

Influence of Coal-Tar Sealcoat and Other Carbonaceous Materials on Polycyclic Aromatic Hydrocarbon Loading in an Urban Watershed

Yaning Yang; Peter C. Van Metre; Barbara J. Mahler; Jennifer T. Wilson; Bertrand Ligouis; Md. Muhit Razzaque; Charles J. Werth

Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, used in some pavement sealcoats, is a dominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment.


Environmental Science & Technology | 2010

Coal-Tar-Based Parking Lot Sealcoat: An Unrecognized Source of PAH to Settled House Dust

Barbara J. Mahler; Peter C. Van Metre; Jennifer T. Wilson; MaryLynn Musgrove; Teresa L. Burbank; Thomas E. Ennis; Thomas J. Bashara

Despite much speculation, the principal factors controlling concentrations of polycyclic aromatic hydrocarbons (PAH) in settled house dust (SHD) have not yet been identified. In response to recent reports that dust from pavement with coal-tar-based sealcoat contains extremely high concentrations of PAH, we measured PAH in SHD from 23 apartments and in dust from their associated parking lots, one-half of which had coal-tar-based sealcoat (CT). The median concentration of total PAH (T-PAH) in dust from CT parking lots (4760 μg/g, n = 11) was 530 times higher than that from parking lots with other pavement surface types (asphalt-based sealcoat, unsealed asphalt, concrete [median 9.0 μg/g, n = 12]). T-PAH in SHD from apartments with CT parking lots (median 129 μg/g) was 25 times higher than that in SHD from apartments with parking lots with other pavement surface types (median 5.1 μg/g). Presence or absence of CT on a parking lot explained 48% of the variance in log-transformed T-PAH in SHD. Urban land-use intensity near the residence also had a significant but weaker relation to T-PAH. No other variables tested, including carpeting, frequency of vacuuming, and indoor burning, were significant.


Science of The Total Environment | 2012

Spatial and temporal trends in PCBs in sediment along the lower Rhône River, France.

Marc Desmet; Brice Mourier; Barbara J. Mahler; Peter C. Van Metre; Gwenaëlle Roux; Henri Persat; Irène Lefèvre; Annie Peretti; Emmanuel Chapron; Anaëlle Simonneau; Cécile Miège; Marc Babut

Despite increasingly strict control of polychlorinated biphenyl (PCB) releases in France since the mid-1970s, PCB contamination of fish recently has emerged as a major concern in the lower Rhône River basin. We measured PCB concentrations in Rhône sediment to evaluate the effects of PCB releases from major urban and industrial areas, sediment redistribution by large floods, and regulatory controls on PCB trends from 1970 to present. Profiles of PCBs (the sum of seven indicator PCB congeners) were reconstructed from sediment cores collected from an off-river rural reference site and from three depositional areas along the Rhône upstream and downstream from the city of Lyon, France. Core chronology was determined from radionuclide profiles and flood deposits. PCB concentrations increased progressively in the downstream direction, and reached a maximum concentration in 1991 of 281 μg/kg at the most downstream site. At the rural reference site and at the upstream Rhône site, PCB concentrations peaked in the 1970s (maximum concentration of 13 and 78 μg/kg, respectively) and have decreased exponentially since then. PCB concentrations in the middle and downstream cores were elevated into the early 1990s, decreased very rapidly until 2000, and since then have remained relatively stable. Congener profiles for three time windows (1965-80, 1986-93, and 2000-08) were similar in the three sediment cores from the Rhône and different from those at the rural reference site. The results indicate that permitted discharges from a hazardous-waste treatment facility upstream from Lyon might have contributed to high concentrations into the 1980-90s, but that industrial discharges from the greater Lyon area and tributaries to the Rhône near Lyon have had a greater contribution since the 1990s. There is little indication that PCB concentration in sediments downstream from Lyon will decrease over at least the short term.


Environmental Science & Technology | 2013

Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement.

E. Spencer Williams; Barbara J. Mahler; Peter C. Van Metre

Recent (2009-10) studies documented significantly higher concentrations of polycyclic aromatic hydrocarbons (PAHs) in settled house dust in living spaces and soil adjacent to parking lots sealed with coal-tar-based products. To date, no studies have examined the potential human health effects of PAHs from these products in dust and soil. Here we present the results of an analysis of potential cancer risk associated with incidental ingestion exposures to PAHs in settings near coal-tar-sealed pavement. Exposures to benzo[a]pyrene equivalents were characterized across five scenarios. The central tendency estimate of excess cancer risk resulting from lifetime exposures to soil and dust from nondietary ingestion in these settings exceeded 1 × 10(-4), as determined using deterministic and probabilistic methods. Soil was the primary driver of risk, but according to probabilistic calculations, reasonable maximum exposure to affected house dust in the first 6 years of life was sufficient to generate an estimated excess lifetime cancer risk of 6 × 10(-5). Our results indicate that the presence of coal-tar-based pavement sealants is associated with significant increases in estimated excess lifetime cancer risk for nearby residents. Much of this calculated excess risk arises from exposures to PAHs in early childhood (i.e., 0-6 years of age).

Collaboration


Dive into the Barbara J. Mahler's collaboration.

Top Co-Authors

Avatar

Peter C. Van Metre

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jennifer T. Wilson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

MaryLynn Musgrove

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William T. Foreman

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Edward Callender

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Lisa H. Nowell

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley D. Garner

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Fuller

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge