Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara J. Tarasevich is active.

Publication


Featured researches published by Barbara J. Tarasevich.


Toxicological Sciences | 2009

Macrophage Responses to Silica Nanoparticles are Highly Conserved Across Particle Sizes

Katrina M. Waters; Lisa M. Masiello; Richard C. Zangar; Barbara J. Tarasevich; Norman J. Karin; Ryan D. Quesenberry; Somnath Bandyopadhyay; Justin G. Teeguarden; Joel G. Pounds; Brian D. Thrall

Concerns about the potential adverse health effects of engineered nanoparticles stems in part from the possibility that some materials display unique chemical and physical properties at nanoscales which could exacerbate their biological activity. However, studies that have assessed the effect of particle size across a comprehensive set of biological responses have not been reported. Using a macrophage cell model, we demonstrate that the ability of unopsonized amorphous silica particles to stimulate inflammatory protein secretion and induce macrophage cytotoxicity scales closely with the total administered particle surface area across a wide range of particle diameters (7-500 nm). Whole genome microarray analysis of the early gene expression changes induced by 10- and 500-nm particles showed that the magnitude of change for the majority of genes affected correlated more tightly with particle surface area than either particle mass or number. Gene expression changes that were particle size-specific were also identified. However, the overall biological processes represented by all gene expression changes were nearly identical, irrespective of particle diameter. Direct comparison of the cell processes represented in the 10- and 500-nm particle gene sets using gene set enrichment analysis revealed that among 1009 total biological processes, none were statistically enriched in one particle size group over the other. The key mechanisms involved in silica nanoparticle-mediated gene regulation and cytotoxicity have yet to be established. However, our results suggest that on an equivalent nominal surface area basis, common biological modes of action are expected for nano- and supranano-sized silica particles.


ACS Nano | 2007

Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells.

Galya Orr; David J. Panther; Jaclyn L. Phillips; Barbara J. Tarasevich; Alice Dohnalkova; Dehong Hu; Justin G. Teeguarden; Joel G. Pounds

The growing commerce in micro- and nanotechnology is expected to increase human exposure to submicrometer and nanoscale particles, including certain forms of amorphous silica. When inhaled, these particles are likely to reach the alveoli, where alveolar type II epithelial cells that are distinguished by apical microvilli are found. These cells play critical roles in the function of the alveoli and participate in the immune response to amorphous silica and other particles by releasing chemokines. The cellular interactions of the particles, which drive the cellular responses, are still unclear. Adverse effects of nanoparticles have been attributed, in part, to the unique properties of materials at the nanoscale. However, little is known about the cellular interactions of individual or small nanoparticle aggregates, mostly because of their tendency to agglomerate under experimental conditions. Here we investigate the interaction and internalization pathway of individual precipitated amorphous silica particles with specific surface properties and size, by following one particle at a time. We find that both 100 and 500 nm particles can take advantage of the actin turnover machinery within filopodia and microvilli-like structures to advance their way into alveolar type II epithelial cells. This pathway is strictly dependent on the positive surface charge of the particle and on the integrity of the actin filaments, unraveling the coupling of the particle with the intracellular environment across the cell membrane. The retrograde pathway brings a new mechanism by which positive surface charge supports particle recruitment, and potential subsequent toxicity, by polarized epithelial cells bearing microvilli.


Nanotoxicology | 2011

Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A

Galya Orr; William B. Chrisler; Kaylyn J. Cassens; Ruimin Tan; Barbara J. Tarasevich; Lye Meng Markillie; Richard C. Zangar; Brian D. Thrall

Abstract The cellular uptake of engineered nanoparticles (ENPs) is known to involve active transport mechanisms, yet the biological molecules involved are poorly understood. We demonstrate that the uptake of amorphous silica ENPs by macrophage cells, and the secretion of proinflammatory cytokines, is strongly inhibited by silencing expression of scavenger receptor A (SR-A). Conversely, ENP uptake is augmented by introducing SR-A expression into human cells that are normally non-phagocytic. Confocal microscopy analyses show that the majority of single or small clusters of silica ENPs co-localize with SR-A and are internalized through a pathway characteristic of clathrin-dependent endocytosis. In contrast, larger silica ENP agglomerates (>500 nm) are poorly co-localized with the receptor, suggesting that the physical agglomeration state of an ENP influences its cellular trafficking. As SR-A is expressed in macrophages throughout the reticulo-endothelial system, this pathway is likely an important determinant of the biological response to ENPs.


Biomedical Materials | 2012

Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior

Genyao Lin; Lelia Cosimbescu; Norman J. Karin; Barbara J. Tarasevich

Here we report the design and characterization of injectable and thermosensitive hydrogel composites comprised of poly(lactic acid-co-glycolic acid)-g-poly(ethylene glycol)(PLGA-g-PEG) containing hydroxyapatite (HA) for potential application in bone tissue engineering. Inclusion of HA into the hydrogels would provide both enhanced mechanical properties and bioactivity to the composites. The effects of HA on the properties of the hydrogels were investigated in terms of storage modulus, sol-gel transition properties, pH and in vitro dye release behavior. The hydrogel composites were also studied by scanning electron microscopy (SEM), x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that hydrogel composites preserved their sol-gel transition properties in the presence of HA. The storage modulus of the hydrogels was enhanced in a HA-content dependent manner, and the acidic pH environment of the hydrogel was neutralized by HA, both representing great advantages over the hydrogel alone. SEM images showed that HA particles were well dispersed and distributed within the hydrogel matrix. The composites showed a sustained release of a small molecule model dye for up to two weeks with slight increase of release with addition of HA. This work demonstrates the formation of novel thermogelling composites of PLGA-g-PEG and HA that are injectable and promote controlled release.


Biophysical Journal | 2008

The Structure and Orientation of the C-Terminus of LRAP

Wendy J. Shaw; Kim F. Ferris; Barbara J. Tarasevich; Jenna L. Larson

Amelogenin is the predominant protein found during enamel development and is thought to be the biomineralization protein controlling the unique elongated hydroxyapatite crystals that constitute enamel. The secondary structure of biomineralization proteins is thought to be important in the interaction with hydroxyapatite. Unfortunately, very little data are available on the structure or the orientation of amelogenin, either in solution or bound to hydroxyapatite. The C-terminus contains the majority of the charged residues and is predicted to interact with hydroxyapatite; thus, we used solid-state NMR dipolar recoupling techniques to investigate the structure and orientation of the C-terminus of LRAP, a naturally occurring splice variant of full-length amelogenin. Using (13)C{(15)N} Rotational Echo DOuble Resonance (REDOR), the structure of the C-terminus was found to be largely random coil, both on the surface of hydroxyapatite as well as lyophilized from solution. The orientation of the C-terminal region with respect to hydroxyapatite was investigated for two alanine residues (Ala(46) and Ala(49)) using (13)C{(31)P} REDOR and one lysine residue (Lys(52)) using (15)N{(31)P} REDOR. The residues examined were found to be 7.0, 5.7, and 5.8 A from the surface of hydroxyapatite for Ala(46), Ala(49), and Lys(52), respectively. This provides direct evidence that the charged C-terminus is interacting closely with hydroxyapatite, positioning the acidic amino acids to aid in controlling crystal growth. However, solid-state NMR dynamics measurements also revealed significant mobility in the C-terminal region of the protein, in both the side chains and the backbone, suggesting that this region alone is not responsible for binding.


Toxicology and Applied Pharmacology | 2009

Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane.

Galya Orr; David J. Panther; Kaylyn J. Cassens; Jaclyn L. Phillips; Barbara J. Tarasevich; Joel G. Pounds

The cellular interactions and pathways of engineered submicro- and nano-scale particles dictate the cellular response and ultimately determine the level of toxicity or biocompatibility of the particles. Positive surface charge can increase particle internalization, and in some cases can also increase particle toxicity, but the underlying mechanisms are largely unknown. Here we identify the cellular interaction and pathway of positively charged submicrometer synthetic amorphous silica particles, which are used extensively in a wide range of industrial applications, and are explored for drug delivery and medical imaging and sensing. Using time lapse fluorescence imaging in living cells and other quantitative imaging approaches, it is found that heparan sulfate proteoglycans play a critical role in the attachment and internalization of the particles in alveolar type II epithelial cell line (C10), a potential target cell type bearing apical microvilli. Specifically, the transmembrane heparan sulfate proteoglycan, syndecan-1, is found to mediate the initial interactions of the particles at the cell surface, their coupling with actin filaments across the cell membrane, and their subsequent internalization via macropinocytosis. The observed interaction of syndecan molecules with the particle prior to their engagement with actin filaments suggests that the particles initiate their own internalization by facilitating the clustering of the molecules, which is required for the actin coupling and subsequent internalization of syndecan. Our observations identify a new role for syndecan-1 in mediating the cellular interactions and fate of positively charged submicrometer amorphous silica particles in the alveolar type II epithelial cell, a target cell for inhaled particles.


Nanotoxicology | 2015

Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

Cosmin Mihai; William B. Chrisler; Yumei Xie; Dehong Hu; Craig J. Szymanski; Ana Tolic; Jessica A. Klein; Jordan N. Smith; Barbara J. Tarasevich; Galya Orr

Abstract Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air–liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.


Journal of Physical Chemistry B | 2013

Neutron reflectometry studies of the adsorbed structure of the amelogenin, LRAP.

Barbara J. Tarasevich; Ursula Perez-Salas; David L. Masica; John S. Philo; Paul A. Kienzle; Susan Krueger; Charles F. Majkrzak; Jeffrey L. Gray; Wendy J. Shaw

Amelogenins make up over 90% of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayer (SAM) surfaces. Sedimentation velocity (SV) experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ∼32 Å thick layers at ∼70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. SV experiments and Rosetta simulations show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal regions (residues ∼8-24) located near the surface is consistent with the higher scattering length density (SLD) found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.


Journal of Biomedical Materials Research Part A | 2009

The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels

Barbara J. Tarasevich; Anna Gutowska; Xiaohong S. Li; Byeongmoon Jeong

Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery.


Biochimica et Biophysica Acta | 2010

A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein)

Garry W. Buchko; Barbara J. Tarasevich; Jacky Roberts; Malcolm L. Snead; Wendy J. Shaw

Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the (1)H-(15)N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the (1)H-(15)N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12 and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of (1)H-(15)N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full-length protein.

Collaboration


Dive into the Barbara J. Tarasevich's collaboration.

Top Co-Authors

Avatar

Wendy J. Shaw

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Garry W. Buchko

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter C. Rieke

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Genyao Lin

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Glen E. Fryxell

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Mark H. Engelhard

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Galya Orr

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Laurie L. Wood

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susan Krueger

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Gutowska

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge