Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara K. Robinson is active.

Publication


Featured researches published by Barbara K. Robinson.


Jaro-journal of The Association for Research in Otolaryngology | 2001

Response Properties of the Refractory Auditory Nerve Fiber

Charles A. Miller; Paul J. Abbas; Barbara K. Robinson

The refractory characteristics of auditory nerve fibers limit their ability to accurately encode temporal information. Therefore, they are relevant to the design of cochlear prostheses. It is also possible that the refractory property could be exploited by prosthetic devices to improve information transfer, as refractoriness may enhance the nerves stochastic properties. Furthermore, refractory data are needed for the development of accurate computational models of auditory nerve fibers. We applied a two-pulse forward-masking paradigm to a feline model of the human auditory nerve to assess refractory properties of single fibers. Each fiber was driven to refractoriness by a single (masker) current pulse delivered intracochlearly. Properties of firing efficiency, latency, jitter, spike amplitude, and relative spread (a measure of dynamic range and stochasticity) were examined by exciting fibers with a second (probe) pulse and systematically varying the masker-probe interval (MPI). Responses to monophasic cathodic current pulses were analyzed. We estimated the mean absolute refractory period to be about 330 micros and the mean recovery time constant to be about 410 micros. A significant proportion of fibers (13 of 34) responded to the probe pulse with MPIs as short as 500 micros. Spike amplitude decreased with decreasing MPI, a finding relevant to the development of computational nerve-fiber models, interpretation of gross evoked potentials, and models of more central neural processing. A small mean decrement in spike jitter was noted at small MPI values. Some trends (such as spike latency-vs-MPI) varied across fibers, suggesting that sites of excitation varied across fibers. Relative spread was found to increase with decreasing MPI values, providing direct evidence that stochastic properties of fibers are altered under conditions of refractoriness.


Hearing Research | 1999

Electrically evoked single-fiber action potentials from cat: Responses to monopolar, monophasic stimulation

Charles A. Miller; Paul J. Abbas; Barbara K. Robinson; Jay T. Rubinstein; Akihiro Matsuoka

We recorded action potentials from single auditory-nerve fibers of cats using monophasic current pulses delivered by a monopolar intracochlear electrode. These simple stimuli provided a means of investigating basic properties and hypotheses of electrical excitation. Standard micropipette recording techniques were used. Responses to anodic (positive) and cathodic (negative) stimulus pulses were recorded separately to evaluate stimulus polarity effects. Mean spike (action potential) latency was polarity dependent, with greater latencies for cathodic stimulation. Threshold stimulus level was also polarity dependent, with relatively lower cathodic thresholds. Both effects are consistent with trends reported in the compound action potential. Variability in single-fiber latency (i.e., jitter) was dependent upon stimulus polarity. In contrast, the slope of single-fiber input-output functions failed to show a clear polarity dependence, although such trends have been seen in the compound action potential data. We also observed a relatively greater degree of adaptation over time with anodic stimulation. Bimodal post-stimulus-time histograms were recorded in a small number (2%) of fibers, supporting the hypothesis that both the peripheral (dendritic) and central axonal processes are excitable with the same stimulus polarity, in a limited number of cases. This observation, together with analyses of interactions among measures of latency, threshold, and jitter, is consistent with the hypothesis that, with monopolar intracochlear stimulation, most fibers are stimulated at axonal (modiolar) sites and a minority of fibers nearest the electrode are stimulable at their peripheral processes.


Hearing Research | 1998

Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation.

Charles A. Miller; Paul J. Abbas; Jay T. Rubinstein; Barbara K. Robinson; Akihiro Matsuoka; George G. Woodworth

We recorded electrically evoked compound action potentials (EAPs) from guinea pigs and cats using monophasic current pulses delivered by a monopolar intracochlear electrode. By using simple stimuli, we sought results that could shed light on basic excitation properties of the auditory nerve. In these acute experiments, the recording electrode was placed directly on the auditory nerve. Responses to anodic and cathodic stimulus pulses were recorded separately to evaluate stimulus polarity effects. Several polarity-dependent properties were observed. Both EAP morphology and latency were polarity-dependent, with greater latencies for cathodic stimulation. Threshold stimulus level was also polarity-dependent, but in different directions in the two species: cats had lower cathodic thresholds while guinea pigs had lower anodic thresholds. We also observed that the slopes of the EAP amplitude-level functions depended upon stimulus polarity. In most cases where EAP saturation amplitude could be measured, that amplitude was similar for anodic and cathodic stimuli, suggesting that either stimulus polarity can recruit all fibers, or at least a comparable numbers of fibers. The common findings (e.g., EAP morphology and polarity-dependent latency) observed in these two species suggest results that can be extrapolated to responses obtained in humans, while the species-specific findings (e.g., dependence of threshold on polarity) may point to underlying anatomical differences that caution against overgeneralization across species. Some of our observations also bear upon hypotheses of how electrical stimuli may excite different sites on auditory nerve fibers.


Jaro-journal of The Association for Research in Otolaryngology | 2007

Changes Across Time in Spike Rate and Spike Amplitude of Auditory Nerve Fibers Stimulated by Electric Pulse Trains

Fawen Zhang; Charles A. Miller; Barbara K. Robinson; Paul J. Abbas; Ning Hu

We undertook a systematic evaluation of spike rates and spike amplitudes of auditory nerve fiber (ANF) responses to trains of electric current pulses. Measures were obtained from acutely deafened cats to examine time-related changes free from the effects of hair-cell and synaptic adaptation. Such data relate to adaptation that likely occurs in ANFs of cochlear-implant users. A major goal was to determine and compare rate adaptation observed at different pulse rates (primarily 250, 1000, and 5000 pulse/s) and describe them using decaying exponential models similar to those used in acoustic studies. Rate-vs.-time functions were best described by two-exponent models and produced time constants similar to (although slightly greater than) the “rapid” and “short-term” components described in acoustic studies. There was little dependence of these time constants on onset spike rate, but pulse-rate effects were noted. Spike amplitude changes followed a time course different from that of rate adaptation consistent with a process related to ANF interspike intervals. The fact that two time constants governed rate adaptation in electrically stimulated and deafened fibers suggests that future computational models of adaptation should not only include hair cell and synapse components, but also components determined by fiber membrane characteristics.


Hearing Research | 2003

Electrode configuration influences action potential initiation site and ensemble stochastic response properties

Charles A. Miller; Paul J. Abbas; Kirill V. Nourski; Ning Hu; Barbara K. Robinson

The configuration of intracochlear electrodes used to electrically stimulate the auditory nerve influences the ensemble fiber response. For example, monopolar stimulation produces lower thresholds and greater spread of excitation than does bipolar stimulation. We used two approaches to investigate how the ensemble of auditory-nerve fibers responds to stimulation delivered by different electrode configurations. As the electrically evoked compound action potential (ECAP) reflects the ensemble response of the nerve, we used its morphology and changes with stimulus level to assess issues related to site-of-excitation and fiber recruitment. In our first approach, feline ECAPs were obtained using a nucleus-style banded electrode array. ECAP latency functions indicated that bipolar stimulation can initiate action potentials at more peripheral sites than does monopolar stimulation. We observed double-peaked ECAPs with bipolar and tripolar stimulation, suggesting excitation of both peripheral and central neural processes. Finally, we observed in some cases a tendency for monopolar stimulation to produce wider ECAP potentials, consistent with the notion that monopolar stimulation excites a broader spatial extent of the fiber population. In our second approach, we applied a simple model to published surveys of single-fiber responses to provide insight into the stochastic properties of the ensemble response. Our results suggest that broader recruitment of fiber activity produced by monopolar stimulation results in a population response with more probabilistic response characteristics and ensemble spike jitter. These observations and our ECAP results are consistent with reports of perceptual advantages attributed to monopolar or other less-focused modes of stimulation.


The Journal of Comparative Neurology | 2007

Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells.

Shaheen A. Alam; Barbara K. Robinson; Jie Huang; Steven H. Green

Neurons depend on afferent input for survival. Rats were given daily kanamycin injections from P8 to P16 to destroy hair cells, the sole afferent input to spiral ganglion neurons (SGNs). Most SGNs die over an ∼14‐week period after deafferentation. During this period, the SGN population is heterogeneous. At any given time, some SGNs exhibit apoptotic markers—TUNEL and cytochrome c loss—whereas others appear nonapoptotic. We asked whether differences among SGNs in intracellular signaling relevant to apoptotic regulation could account for this heterogeneity. cAMP response element binding protein (CREB) phosphorylation, which reflects neurotrophic signaling, is reduced in many SGNs at P16, P23, and P32, when SGNs begin to die. In particular, nearly all apoptotic SGNs exhibit reduced phospho‐CREB, implying that apoptosis is due to insufficient neurotrophic support. However, >32% of SGNs maintain high phospho‐CREB levels, implying access to neurotrophic support. By P60, when ∼50% of the SGNs have died, phospho‐CREB levels in surviving neurons are not reduced, and SGN death is no longer correlated with reduced phospho‐CREB. Activity in the proapoptotic Jun N‐terminal kinase (JNK)‐Jun signaling pathway is elevated in SGNs during the cell death period. This too is heterogeneous: <42% of the SGNs exhibited high phospho‐Jun levels, but nearly all SGNs undergoing apoptosis exhibited elevated phospho‐Jun. Thus, heterogeneity among SGNs in prosurvival and proapoptotic signaling is correlated with apoptosis. SGN death following deafferentation has an early phase in which apoptosis is correlated with reduced phospho‐CREB and a later phase in which it is not. Proapoptotic JNK‐Jun signaling is tightly correlated with SGN apoptosis. J. Comp. Neurol. 503:832–852, 2007.


The Journal of Neuroscience | 2007

Selective Cochlear Degeneration in Mice Lacking the F-Box Protein, Fbx2, a Glycoprotein-Specific Ubiquitin Ligase Subunit

Rick F. Nelson; Kevin A. Glenn; Yuzhou Zhang; Hsiang Wen; Tina Knutson; Cynthia M. Gouvion; Barbara K. Robinson; Zouping Zhou; Baoli Yang; Richard J.H. Smith; Henry L. Paulson

Little is known about the role of protein quality control in the inner ear. We now report selective cochlear degeneration in mice deficient in Fbx2, a ubiquitin ligase F-box protein with specificity for high-mannose glycoproteins (Yoshida et al., 2002). Originally described as a brain-enriched protein (Erhardt et al., 1998), Fbx2 is also highly expressed in the organ of Corti, in which it has been called organ of Corti protein 1 (Thalmann et al., 1997). Mice with targeted deletion of Fbxo2 develop age-related hearing loss beginning at 2 months. Cellular degeneration begins in the epithelial support cells of the organ of Corti and is accompanied by changes in cellular membrane integrity and early increases in connexin 26, a cochlear gap junction protein previously shown to interact with Fbx2 (Henzl et al., 2004). Progressive degeneration includes hair cells and the spiral ganglion, but the brain itself is spared despite widespread CNS expression of Fbx2. Cochlear Fbx2 binds Skp1, the common binding partner for F-box proteins, and is an unusually abundant inner ear protein. Whereas cochlear Skp1 levels fall in parallel with the loss of Fbx2, other components of the canonical SCF (Skp1, Cullin1, F-box, Rbx1) ubiquitin ligase complex remain unchanged and show little if any complex formation with Fbx2/Skp1, suggesting that cochlear Fbx2 and Skp1 form a novel, heterodimeric complex. Our findings demonstrate that components of protein quality control are essential for inner ear homeostasis and implicate Fbx2 and Skp1 as potential genetic modifiers in age-related hearing loss.


Hearing Research | 2004

Intracochlear and extracochlear ECAPs suggest antidromic action potentials.

Charles A. Miller; Paul J. Abbas; Marcia Hay-McCutcheon; Barbara K. Robinson; Kirill V. Nourski; Fuh-Cherng Jeng

With experimental animals, the electrically evoked compound action potential (ECAP) can be recorded from multiple sites (e.g., round window, intracranial and intracochlear sites). However, human ECAPs are typically recorded from intracochlear electrodes of the implanted array. To bridge this difference, we obtained ECAPs from cats using both intracochlear and nerve-trunk recording sites. We also sought to determine how recording the site influences the acquired evoked potential and how those differences may provide insight into basic excitation properties. In the main experiment, ECAPs were recorded from four acutely deafened cats after implanting a Nucleus-style banded electrode array. Potentials were recorded from an electrode positioned on the nerve trunk and an intracochlear electrode. We manipulated stimulus level, electrode configuration (monopolar vs bipolar) and stimulus polarity, variables that influence the site of excitation. Intracochlear ECAPs were found to be an order of magnitude greater than those obtained with the nerve-trunk electrode. Also, compared with the nerve-trunk potentials, the intracochlear ECAPs more closely resembled those obtained from humans in that latencies were shorter and the waveform morphology was typically biphasic (a negative peak followed by a positive peak). With anodic monophasic stimuli, the ECAP had a unique positive-to-negative morphology which we attributed to antidromic action potentials resulting from a relatively central site of excitation. We also collected intracochlear ECAPs from twenty Nucleus 24 implant users. Compared with the feline ECAPs, the human potentials had smaller amplitudes and longer latencies. It is not clear what underlies these differences, although several factors are considered.


Hearing Research | 1994

The use of long-duration current pulses to assess nerve survival ☆

Charles A. Miller; Paul J. Abbas; Barbara K. Robinson

This study investigated the usefulness of long-duration current pulses in assessing the status of the auditory nerve in ears with various degrees of retrograde neural degeneration. Guinea pigs were deafened with aminoglycosides prior to acute implantation of the cochlea and collection of electrically evoked auditory brainstem responses (EABRs). Analysis of wave I evoked with long-duration current pulses suggests that this evoked response is sensitive to degeneration of the peripheral processes of the auditory nerve. Correlations with spiral ganglion cell density show that EABR measures obtained with long-duration pulses are comparable to those previously established for estimating nerve survival. Further analysis indicates that this measure may provide unique information about the degenerative state of the nerve. Threshold EABR measures using long-duration pulses are evidently more place-specific than other measures. Also, results suggest that long-duration pulses may be sensitive to two phases of the degenerative process: degradation of the peripheral processes and subsequent degeneration of neural processes central to the spiral ganglion.


Jaro-journal of The Association for Research in Otolaryngology | 2006

Electrical Excitation of the Acoustically Sensitive Auditory Nerve: Single-Fiber Responses to Electric Pulse Trains

Charles A. Miller; Paul J. Abbas; Barbara K. Robinson; Kirill V. Nourski; Fawen Zhang; Fuh-Cherng Jeng

Nearly all studies on auditory-nerve responses to electric stimuli have been conducted using chemically deafened animals so as to more realistically model the implanted human ear that has typically been profoundly deaf. However, clinical criteria for implantation have recently been relaxed. Ears with “residual” acoustic sensitivity are now being implanted, calling for the systematic evaluation of auditory-nerve responses to electric stimuli as well as combined electric and acoustic stimuli in acoustically sensitive ears. This article presents a systematic investigation of single-fiber responses to electric stimuli in acoustically sensitive ears. Responses to 250 pulse/s electric pulse trains were collected from 18 cats. Properties such as threshold, dynamic range, and jitter were found to differ from those of deaf ears. Other types of fiber activity observed in acoustically sensitive ears (i.e., spontaneous activity and electrophonic responses) were found to alter the temporal coding of electric stimuli. The electrophonic response, which was shown to greatly change the information encoded by spike intervals, also exhibited fast adaptation relative to that observed in the “direct” response to electric stimuli. More complex responses, such as “buildup” (increased responsiveness to successive pulses) and “bursting” (alternating periods of responsiveness and unresponsiveness) were observed. Our findings suggest that bursting is a response unique to sustained electric stimulation in ears with functional hair cells.

Collaboration


Dive into the Barbara K. Robinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Hu

University of Iowa Hospitals and Clinics

View shared research outputs
Top Co-Authors

Avatar

Fawen Zhang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge