Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara King is active.

Publication


Featured researches published by Barbara King.


European Journal of Neuroscience | 2009

Examination of intravenous and intra-CSF protein delivery for treatment of neurological disease

Kim M. Hemsley; Amanda J. Luck; Allison C. Crawley; Sofia Hassiotis; Helen Beard; Barbara King; Tomas Rozek; Tina Rozaklis; Maria Fuller; John J. Hopwood

Mucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and neurodegeneration typify this and many other lysosomal storage disorders. We propose that intra‐cerebrospinal fluid protein delivery represents a potential therapeutic avenue for treatment of this and other neurodegenerative conditions; however, technical restraints restrict examination of its use prior to adulthood in mice. We have used a naturally‐occurring Mucopolysaccharidosis type IIIA mouse model to determine the effectiveness of combining intravenous protein replacement (1 mg/kg) from birth to 6 weeks of age with intra‐cerebrospinal fluid sulphamidase delivery (100 μg, fortnightly from 6 weeks) on behaviour, the level of heparan sulphate‐oligosaccharide storage and other neuropathology. Mice receiving combination treatment exhibited similar clinical improvement and reduction in heparan sulphate storage to those only receiving intra‐cerebrospinal fluid enzyme. Reductions in micro‐ and astrogliosis and delayed development of ubiquitin‐positive lesions were seen in both groups. A third group of intravenous‐only treated mice did not exhibit clinical or neuropathological improvements. Intra‐cerebrospinal fluid injection of sulphamidase effectively, but dose‐dependently, treats neurological pathology in Mucopolysaccharidosis type IIIA, even when treatment begins in mice with established disease.


Molecular Genetics and Metabolism | 2009

Effect of cisternal sulfamidase delivery in MPS IIIA Huntaway dogs - a proof of principle study.

Kim M. Hemsley; Elizabeth J. Norman; Allison C. Crawley; Dyane Auclair; Barbara King; Maria Fuller; Debbie L. Lang; Caroline J. Dean; R. D. Jolly; John J. Hopwood

Mucopolysaccharidosis type IIIA (MPS IIIA) results from lack of functional sulfamidase (SGSH), a lysosomal enzyme. Its substrate, heparan sulfate, and other secondarily-stored compounds subsequently accumulate primarily within the central nervous system (CNS), resulting in progressive mental deterioration and early death. Presently there is no treatment. As a potential therapeutic strategy, recombinant human sulfamidase (rhSGSH) was administered into the CSF (via the cerebellomedullary cistern) of three adult MPS IIIA dogs either twice with a 4 day interval, or weekly for up to 4 weeks. The dogs were euthanased 24 h post-injection along with one untreated unaffected and two MPS IIIA controls. We have examined the three dimensional pattern of distribution of enzyme in the CNS and its ability to reduce primary substrate storage. High concentrations of rhSGSH protein, with up to 39-fold normal enzyme activity levels were detected within widespread areas of the CNS. RhSGSH protein was also detectable by immunohistochemistry in neurons and glia in all three enzyme-treated dogs. In both weekly-treated dogs, relative levels of a heparan sulfate-derived disaccharide, measured using tandem mass spectrometry, were lower in many brain regions when compared to untreated MPS IIIA controls. A moderately severe meningitis was also present as well as antibodies to rhSGSH in CSF/plasma. These findings demonstrate proof of principle that MPS IIIA can be treated by intracisternal enzyme replacement warranting further experiments in animals tolerant to rhSGSH. This enzyme delivery method may represent a means of treating neuropathology in MPS IIIA and other lysosomal storage disorders affecting the CNS.


Neurobiology of Disease | 2011

Enzyme replacement reduces neuropathology in MPS IIIA dogs

Allison C. Crawley; Neil R. Marshall; Helen Beard; Sofia Hassiotis; Vicki Walsh; Barbara King; Nicola Hucker; Maria Fuller; R. D. Jolly; John J. Hopwood; Kim M. Hemsley

There is no treatment for the progressive neurodegenerative lysosomal storage disorder mucopolysaccharidosis type IIIA (MPS IIIA), which occurs due to a deficiency of functional N-sulfoglucosamine sulfohydrolase (SGSH), with subsequent accumulation of partially-degraded heparan sulfate and secondarily-stored compounds including GM2 and GM3 gangliosides and unesterified cholesterol. The brain is a major site of pathology and affected children exhibit progressive cognitive decline and early death. In the present study, six MPS IIIA dogs received intravenous recombinant human SGSH (rhSGSH) from birth to either 8 or 12 weeks of age (1 mg/kg, up to 5 mg), with subsequent intra-cerebrospinal fluid injection of 3 or 15 mg rhSGSH (or vehicle) on a weekly or fortnightly basis to 23 weeks of age. All dogs completed the protocol without incident, and there was no clinically-relevant cellular or humoral immune response to rhSGSH delivery. Immunohistochemistry demonstrated rhSGSH delivery to widespread regions of the brain, and tandem mass spectrometry revealed an apparent dose-dependent decrease in the relative level of a heparan sulfate-derived disaccharide, with near normalization of substrate in many brain regions at the higher dose. Secondarily-stored GM3 ganglioside and unesterified cholesterol, determined using histological methods, were also reduced in a dose-dependent manner, as was the number of activated microglia. We have demonstrated that pre-symptomatic treatment of this progressive neurodegenerative disorder via intra-cerebrospinal fluid injection of rhSGSH mediates highly significant reductions in neuropathology in this MPS IIIA model and clinical trials of this treatment approach in MPS IIIA patients are therefore indicated.


Journal of Molecular Neuroscience | 2000

Caprine mucopolysaccharidosis IIID: A preliminary trial of enzyme replacement therapy

Erinn Downs-Kelly; Margaret Z. Jones; Joseph Alroy; Kevin T. Cavanagh; Barbara King; Rebecca Lucas; John C. Baker; Stacey A. Kraemer; John J. Hopwood

Mucopolysaccharidosis type IIID (MPS IIID) is a lysosomal storage disorder resulting from lack of activity of the lysosomal hydrolase N-acetylglucosamine 6-sulfatase (6S) (EC 3.1.6.14). The syndrome is associated with systemic and central nervous system (CNS) heparan sulfate glycosaminoglycan (HS-GAG) accumulation, secondary storage of lipids, and severe, progressive dementia. In this investigation, caprine MPS IIID, established as a large animal model for the human disease, was used to evaluate the efficacy of enzyme replacement therapy (ERT). Recombinant caprine 6S (rc6S) (1 mg/kg/dose) was administered intravenously to one MPS IIID goat kid at 2, 3, and 4 wks of age. Five days after the last dose, the uronic acid (UA) content and the composition of uncatabolized HS-GAG fractions in the brain of the ERT-treated MPS IIID kid were similar to those from a control, untreated MPS IIID animal. However, hepatic uronic acid levels in the treated MPS IIID kid were approximately 90% lower than those in the untreated MPS IIID control; whereas the composition of the residual hepatic HS-GAG was identical to that in the untreated animal. Marked reduction of lysosomal storage vacuoles in hepatic cells of the treated MPS IIID kid was observed, but ERT had no effect on CNS lesions. No residual 6S activity was detected in brain or liver. This preliminary investigation indicates that other treatment regimens will be necessary to ameliorate MPS III-related CNS lesions.


Experimental Neurology | 2015

Delivery of therapeutic protein for prevention of neurodegenerative changes: comparison of different CSF-delivery methods.

Neil R. Marshall; Sofia Hassiotis; Barbara King; Tina Rozaklis; Paul J. Trim; Stephen Duplock; Leanne K. Winner; Helen Beard; Marten F. Snel; R. D. Jolly; John J. Hopwood; Kim M. Hemsley

Injection of lysosomal enzyme into cisternal or ventricular cerebrospinal fluid (CSF) has been carried out in 11 lysosomal storage disorder models, with each study demonstrating reductions in primary substrate and secondary neuropathological changes, and several reports of improved neurological function. Whilst acute studies in mucopolysaccharidosis (MPS) type II mice revealed that intrathecally-delivered enzyme (into thoraco-lumbar CSF) accesses the brain, the impact of longer-term treatment of affected subjects via this route is unknown. This approach is presently being utilized to treat children with MPS types I, II and III. Our aim was to determine the efficacy of repeated intrathecal injection of recombinant human sulfamidase (rhSGSH) on pathological changes in the MPS IIIA dog brain. The outcomes were compared with those in dogs treated via intra-cisternal or ventricular routes. Control dogs received buffer or no treatment. Significant reductions in primary/secondary substrate levels in brain were observed in dogs treated via all routes, although the extent of the reduction differed regionally. Treatment via all CSF access points resulted in large reductions in microgliosis in superficial cerebral cortex, but only ventricular injection enabled amelioration in deep cerebral cortex. Formation of glutamic acid decarboxylase-positive axonal spheroids in deep cerebellar nuclei was prevented by treatment delivered via any route. Anti-rhSGSH antibodies in the sera of some dogs did not reduce therapeutic efficacy. Our data indicates the capacity of intra-spinal CSF-injected rhSGSH to circulate within CSF-filled spaces, penetrate into brain and mediate a significant reduction in substrate accumulation and secondary pathology in the MPS IIIA dog brain.


Molecular Genetics and Metabolism | 2015

Determination of the role of injection site on the efficacy of intra-CSF enzyme replacement therapy in MPS IIIA mice.

Helen Beard; Amanda J. Luck; Sofia Hassiotis; Barbara King; Paul J. Trim; Marten F. Snel; John J. Hopwood; Kim M. Hemsley

MPS IIIA is an inherited neurodegenerative lysosomal storage disorder characterized by cognitive impairment, sleep-wake cycle disturbance, speech difficulties, eventual mental regression and early death. Neuropathological changes include accumulation of heparan sulfate and glycolipids, neuroinflammation and degeneration. Pre-clinical animal studies indicate that replacement of the deficient enzyme, sulfamidase, via intra-cerebrospinal fluid (CSF) injection is a clinically-relevant treatment approach, reducing neuropathological changes and improving symptoms. Given that there are several routes of administration of enzyme into the CSF (intrathecal lumbar, cisternal and ventricular), determining the effectiveness of each injection strategy is crucial in order to provide the best outcome for patients. We delivered recombinant human sulfamidase (rhSGSH) to a congenic mouse model of MPS IIIA via each of the three routes. Mice were euthanized 24h or one-week post-injection; the distribution of enzyme within the brain and spinal cord parenchyma was investigated, and the impact on primary substrate levels and other pathological lesions determined. Both ventricular and cisternal injection of rhSGSH enable enzyme delivery to brain and spinal cord regions, with the former mediating large, statistically significant decreases in substrate levels and reducing microglial activation. The single lumbar CSF infusion permitted more restricted enzyme delivery, with no reduction in substrate levels and little change in other disease-related lesions in brain tissue. While the ventricular route is the most invasive of the three methods, this strategy may enable the widest distribution of enzyme within the brain, and thus requires further exploration.


Journal of Molecular Neuroscience | 2004

Caprine mucopolysaccharidosis IIID: fetal and neonatal brain and liver glycosaminoglycan and morphological perturbations.

Margaret Z. Jones; Joseph Alroy; Erinn Downs-Kelly; Rebecca Lucas; Stacey A. Kraemer; Kevin T. Cavanagh; Barbara King; John J. Hopwood

Mucopolysaccharidosis IIID (MPS IIID) is a lysosomal storage disease associated with deficient activity of the enzyme N-acetylglucosamine 6-sulfatase (EC 3.1.6.14), a lysosomal hydrolase in the heparan sulfate glycosaminoglycan (HS-GAG) degradation pathway. In caprine MPS IIID, enzyme replacement therapy reversed early postnatal systemic but not primary or secondary central nervous system (CNS) substrate accumulations. The caprine MPS IIID large animal model system was used in this investigation to define the developmental profile of morphological and biochemical perturbations to estimate a time frame for therapeutic intervention. Light and electron microscopy were used to compare the CNS, liver, and kidney of normal +/+, MPS IIID carrier +/-, and MPS IIID-affected -/- goat kids (kids), at 60, 113–114, 128–129, and 135 d gestation (dg) of a 150-d gestational period, at birth, and at 59–64 d of postnatal (d-pn) age. In the CNS of -/- kids, morphological correlations of HS-GAG and glycolipid accumulations were evident in early differentiating neurons at 60 dg. CNS and systemic developmental, regional, and cellular differences in -/-kids at all time points included more prominent and earlier accumulation of lucent, putative HS-GAG substrates in lysosomes of meningeal and perivascular macrophages and hepatic sinusoidal cells than in CNS, hepatic, or renal parenchymal cells. The amounts and compositions of HS-GAG substrates in the brain and liver of +/+, +/-, and -/- kids were determined at 60, 65, 113–114, and 128–135 dg, at birth, and 53–78 d-pn. In the CNS of -/- kids, HS-GAG concentrations were variable and exceeded those of age-matched control tissue samples in the third but not the second trimester. In contrast, hepatic HS-GAG levels in -/- kids exceeded control values at all time points evaluated and paralleled the progressive morphological alterations. CNS and hepatic HS-GAG compositions in -/- kids were similar to each other and were more complex at all pre- and postnatal ages than those from control kids. Based on the time frame of development of CNS lesions and biochemical perturbations, prenatal therapeutic intervention in caprine MPS IIID is likely to be necessary to prevent or ameliorate substantive CNS and systemic lesions.


Journal of Neurochemistry | 2016

Low-dose, continuous enzyme replacement therapy ameliorates brain pathology in the neurodegenerative lysosomal disorder mucopolysaccharidosis type IIIA.

Barbara King; Sofia Hassiotis; Tina Rozaklis; Helen Beard; Paul J. Trim; Marten F. Snel; John J. Hopwood; Kim M. Hemsley

Repeated replacement of sulphamidase via cerebrospinal fluid injection is an effective treatment for pathological changes in the brain in mice and dogs with the lysosomal storage disorder, mucopolysaccharidosis type IIIA (MPS IIIA). Investigational trials of this approach are underway in children with this condition, however, infusions require attendance at a specialist medical facility. We sought to comprehensively evaluate the effectiveness of sustained‐release (osmotic pump‐delivered) enzyme replacement therapy in murine MPS IIIA as this method, if applied to humans, would require only subcutaneous administration of enzyme once the pump was installed. Six‐week‐old MPS IIIA and unaffected mice were implanted with subcutaneous mini‐osmotic pumps connected to an infusion cannula directed at the right lateral ventricle. Either recombinant human sulphamidase or vehicle were infused over the course of 7 weeks, with pumps replaced part‐way through the experimental period. We observed near‐normalisation of primarily stored substrate (heparan sulphate) in both hemispheres of the MPS IIIA brain and cervical spinal cord, as determined using tandem mass spectrometry. Immunohistochemistry indicated a reduction in secondarily stored GM3 ganglioside and neuroinflammatory markers. A bias towards the infusion side was seen in some, but not all outcomes. The recombinant enzyme appears stable under pump‐like conditions for at least 1 month. Given that infusion pumps are in clinical use in other nervous system disorders, e.g. for treatment of spasticity or brain tumours, this treatment method warrants consideration for testing in large animal models of MPS IIIA and other lysosomal storage disorders that affect the brain.


European Journal of Neuroscience | 2014

Disease stage determines the efficacy of treatment of a paediatric neurodegenerative disease

Sofia Hassiotis; Helen Beard; Amanda J. Luck; Paul J. Trim; Barbara King; Marten F. Snel; John J. Hopwood; Kim M. Hemsley

Lysosomal storage disorders are a large group of inherited metabolic conditions resulting from the deficiency of proteins involved in lysosomal catabolism, with resulting accumulation of substrates inside the cell. Two‐thirds of these disorders are associated with a neurodegenerative phenotype and, although few therapeutic options are available to patients at present, clinical trials of several treatments including lysosomal enzyme replacement are underway. Although animal studies indicate the efficacy of pre‐symptomatic treatment, it is largely unknown whether symptomatic disease‐related pathology and functional deficits are reversible. To begin to address this, we used a naturally‐occurring mouse model with Sanfilippo syndrome (mucopolysaccharidosis type IIIA) to examine the effectiveness of intracisternal cerebrospinal fluid enzyme replacement in early, mid‐ and symptomatic disease stage mice. We observed a disease‐stage‐dependent treatment effect, with the most significant reductions in primary and secondary substrate accumulation, astrogliosis and protein aggregate accumulation seen in mucopolysaccharidosis type IIIA mice treated very early in the disease course. Affected mice treated at a symptomatic age exhibited little change in these neuropathological markers in the time‐frame of the study. Microgliosis was refractory to treatment regardless of the age at which treatment was instigated. Although longer‐term studies are warranted, these findings indicate the importance of early intervention in this condition.


Experimental Neurology | 2016

Low-dose, continual enzyme delivery ameliorates some aspects of established brain disease in a mouse model of a childhood-onset neurodegenerative disorder.

Barbara King; Meghan L. Setford; Sofia Hassiotis; Paul J. Trim; Stephen Duplock; Justin Tucker; Kathryn Hattersley; Marten F. Snel; John J. Hopwood; Kim M. Hemsley

AIM To determine the capacity of continual low-dose lysosomal enzyme infusion into the cerebrospinal fluid of mucopolysaccharidosis type IIIA (MPS IIIA) mice to reverse established neurodegenerative disease. The rationale behind the study is that there is only limited animal model-derived evidence supporting treatment of symptomatic patients, principally because few studies have been designed to examine disease reversibility. METHODS Twelve-week old MPS IIIA mice were implanted with indwelling unilateral intra-ventricular cannulae. These were connected to subcutaneous mini-osmotic pumps infusing recombinant human sulphamidase. Pump replacement was carried out in some mice at 16-weeks of age, enabling treatment to continue for a further month. Control affected/unaffected mice received vehicle via the same method. Behavioural, neuropathological and biochemical parameters of disease were assessed. RESULTS Improvement in some, but not all, behavioural parameters occurred. Sulphamidase infusion mediated a statistically significant reduction in primary (heparan sulphate) and secondary (gangliosides GM2, GM3) substrate accumulation in the brain, with small reductions in micro- but not astro-gliosis. There was no change in axonal spheroid number. All mice developed a humoural response, however the antibodies were non-neutralising and no adverse clinical effects were observed. CONCLUSIONS Continual infusion of replacement enzyme partially ameliorates clinical, histological and biochemical aspects of MPS IIIA mice, when treatment begins at an early symptomatic stage.

Collaboration


Dive into the Barbara King's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim M. Hemsley

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sofia Hassiotis

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Helen Beard

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Trim

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Rozaklis

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge