Barbara Klein
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Klein.
Proceedings of SPIE | 2014
Roman Follert; Reinhold J. Dorn; Ernesto Oliva; J.-L. Lizon; A. Hatzes; N. Piskunov; Ansgar Reiners; Ulf Seemann; Eric Stempels; Ulrike Heiter; Thomas Marquart; M. Lockhart; Guillem Anglada-Escudé; Tom Löwinger; Dietrich Baade; J. Grunhut; Paul Bristow; Barbara Klein; Yves Jung; Derek Ives; Florian Kerber; Eszter Pozna; Jerome Paufique; Hans-Ulrich Kaeufl; L. Origlia; E. Valenti; Domingo Gojak; Michael Hilker; Luca Pasquini; Alain Smette
High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage. The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 μm) highresolution spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the wavelength range covered in a single exposure is limited to ~15 nanometers. The CRIRES Upgrade project (CRIRES+) will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing crossdispersion elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
Proceedings of SPIE | 2014
Harald Kuntschner; L. Jochum; Paola Amico; Johannes K. Dekker; Florian Kerber; Enrico Marchetti; Matteo Accardo; Roland Brast; Martin Brinkmann; Ralf Conzelmann; Bernard Delabre; Michel Duchateau; Enrico Fedrigo; Gert Finger; Christoph Frank; Fernando Gago Rodriguez; Barbara Klein; Jens Knudstrup; Miska Le Louarn; Lars Lundin; Andrea Modigliani; M. Müller; Mark Neeser; Sebastien Tordo; E. Valenti; F. Eisenhauer; E. Sturm; Helmut Feuchtgruber; Elisabeth M. George; Michael Hartl
The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1’ patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the baseline design. We will also report on the main science goals of the instrument, ranging from exoplanet detection and characterization to high redshift galaxy observations. We will also briefly describe the SINFONI-SPIFFI upgrade strategy, which is part of the ERIS development plan and the overall project timeline.
Proceedings of SPIE | 2016
Reinhold J. Dorn; Roman Follert; Paul Bristow; Claudio Cumani; Siegfried Eschbaumer; J. Grunhut; Andreas Haimerl; A. Hatzes; Ulrike Heiter; Renate Hinterschuster; Derek Ives; Yves Jung; Florian Kerber; Barbara Klein; Alexis Lavaila; Jean Louis Lizon; Tom Löwinger; Ignacio Molina-Conde; Belinda Nicholson; Thomas Marquart; Ernesto Oliva; L. Origlia; Luca Pasquini; Jerome Paufique; Nikolai Piskunov; Ansgar Reiners; Ulf Seemann; Jörg Stegmeier; Eric Stempels; Sebastien Tordo
The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.
Proceedings of SPIE | 2014
Ernesto Oliva; A. Tozzi; Debora Ferruzzi; L. Origlia; A. Hatzes; Roman Follert; Tom Löwinger; N. Piskunov; Ulrike Heiter; M. Lockhart; Thomas Marquart; Eric Stempels; Ansgar Reiners; Guillem Anglada-Escudé; Ulf Seemann; Reinhold J. Dorn; Paul Bristow; Dietrich Baade; B. Delabre; Domingo Gojak; J. Grunhut; Barbara Klein; Michael Hilker; Derek Ives; Yves Jung; Hans-Ulrich Kaeufl; Florian Kerber; J.-L. Lizon; Luca Pasquini; Jerome Paufique
CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range. This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10”), ideal for observations of extended sources and for precise sky-background subtraction.
Proceedings of SPIE | 2016
P. La Penna; E. Aller Carpentier; Javier Argomedo; Robin Arsenault; Ralf Conzelmann; B. Delabre; R. Donaldson; Fernando Gago; P. Gutierrez-Cheetam; Norbert Hubin; Paul Jolley; M. Kiekebusch; Jean-Paul Kirchbauer; Barbara Klein; Johann Kolb; Harald Kuntschner; M. Le Louarn; J.-L. Lizon; Pierre-Yves Madec; Antonio Manescau; Leander Mehrgan; Sylvain Oberti; J. Quentin; B. Sedghi; S. Ströbele; M. Suarez Valles; Christian Soenke; Sebastien Tordo; J. Vernet
GALACSI is the Adaptive Optics (AO) module that will serve the MUSE Integral Field Spectrograph. In Wide Field Mode it will enhance the collected energy in a 0.2”×0.2” pixel by a factor 2 at 750 nm over a Field of View (FoV) of 1’×1’ using the Ground Layer AO (GLAO) technique. In Narrow Field Mode, it will provide a Strehl Ratio of 5% (goal 10%) at 650 nm, but in a smaller FoV (7.5”×7.5” FoV), using Laser Tomography AO (LTAO). Before being ready for shipping to Paranal, the system has gone through an extensive testing phase in Europe, first in standalone mode and then in closed loop with the DSM in Europe. After outlining the technical features of the system, we describe here the first part of that testing phase and the integration with the AOF ASSIST (Adaptive Secondary Setup and Instrument Stimulator) testbench, including a specific adapter for the IRLOS truth sensor. The procedures for the standalone verification of the main system performances are outlined, and the results of the internal functional tests of GALACSI after full integration and alignment on ASSIST are presented.
Proceedings of SPIE | 2014
Enrico Marchetti; Enrico Fedrigo; Miska Le Louarn; Pierre-Yves Madec; Christian Soenke; Roland Brast; Ralf Conzelmann; Bernard Delabre; Michel Duchateau; Christoph Frank; Barbara Klein; Paola Amico; Norbert Hubin; Simone Esposito; J. Antichi; Luca Carbonaro; Alfio Puglisi; Fernando Quiros-Pacheco; Armando Riccardi; Marco Xompero
The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO’s VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX’s (IR imager) and SPIFFI’s entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.
Proceedings of SPIE | 2014
P. La Penna; S. Ströbele; E. Aller Carpentier; Javier Argomedo; Robin Arsenault; Ralf Conzelmann; B. Delabre; R. Donaldson; Michel Duchateau; Enrico Fedrigo; Fernando Gago; Norbert Hubin; J. Quentin; Paul Jolley; M. Kiekebusch; Jean-Paul Kirchbauer; Barbara Klein; Johann Kolb; Harald Kuntschner; M. Le Louarn; J.-L. Lizon; Pierre-Yves Madec; Antonio Manescau; Leander Mehrgan; B. Sedghi; M. Suarez Valles; Christian Soenke; Sebastien Tordo; J. Vernet; Stefano Zampieri
GALACSI is the Adaptive Optics (AO) modules of the ESO Adaptive Optics Facility (AOF) that will correct the wavefront delivered to the MUSE Integral Field Spectrograph. It will sense with four 40×40 subapertures Shack-Hartmann wavefront sensors the AOF 4 Laser Guide Stars (LGS), acting on the 1170 voice-coils actuators of the Deformable Secondary Mirror (DSM). GALACSI has two operating modes: in Wide Field Mode (WFM), with the four LGS at 64” off axis, the collected energy in a 0.2”×0.2” pixel will be enhanced by a factor 2 at 750 nm over a Field of View (FoV) of 1’×1’ using the Ground Layer AO (GLAO) technique. The other mode, the Narrow Field Mode (NFM), provides an enhanced wavefront correction (Strehl Ratio (SR) of 5% (goal 10%) at 650 nm) but in a smaller FoV (7.5”×7.5”), using Laser Tomography AO (LTAO), with the 4 LGS located closer, at 10” off axis. Before being shipped to Paranal, GALACSI will be first integrated and fully tested in stand-alone, and then moved to a dedicated AOF facility to be tested with the DSM in Europe. At present the module is fully assembled, its main functionalities have been implemented and verified, and AO system tests with the DSM are starting. We present here the main system features and the results of the internal functional tests of GALACSI.
Proceedings of SPIE | 2016
Roman Follert; D. R. Taubert; J. Hollandt; Christian Monte; Ernesto Oliva; Ulf Seemann; Tom Löwinger; Heiko Anwand-Heerwart; C. Schmidt; Reinhold J. Dorn; Paul Bristow; A. Hatzes; Ansgar Reiners; Nikolai Piskunov; Ulrike Heiter; Eric Stempels; Thomas Marquart; Alexis Lavail; Claudio Cumani; J. Grunhut; Andreas Haimerl; Renate Hinterschuster; Derek Ives; Yves Jung; Florian Kerber; Barbara Klein; Jean Louis Lizon; Ignacio Molina-Conde; Belinda Nicholson; L. Origlia
The CRIRES+ project attempts to upgrade the CRIRES instrument into a cross dispersed Echelle spectrograph with a simultaneous recording of 8-10 diffraction orders. In order to transform the CRIRES spectrograph into a cross-dispersing instrument, a set of six reflection gratings, each one optimized for one of the wavelength bands CRIRES+ will operate in (YJHKLM), will be used as cross dispersion elements in CRIRES+. Due to the upgrade nature of the project, the choice of gratings depends on the fixed geometry of the instrument. Thus, custom made gratings would be required to achieve the ambitious design goals. Custom made gratings have the disadvantage, though, that they come at an extraordinary price and with lead times of more than 12 months. To mitigate this, a set of off-the-shelf gratings was obtained which had grating parameters very close to the ones being identified as optimal. To ensure that the rigorous specifications for CRIRES+ will be fulfilled, the CRIRES+ team started a collaboration with the Physikalisch-Technische Bundesanstalt Berlin (PTB) to characterize gratings underconditions similar to the operating conditions in CRIRES+ (angle of incidence, wavelength range). The respective test setup was designed in collaboration between PTB and the CRIRES+ consortium. The PTB provided optical radiation sources and calibrated detectors for each wavelength range. With this setup, it is possible to measure the absolute efficiency of the gratings both wavelength dependent and polarization state dependent in a wavelength range from 0.9 μm to 6 μm.
Proceedings of SPIE | 2014
Matthew Lockhart; Nikolai Piskunov; Eric Stempels; Michael J. Escuti; Ernesto Oliva; H. U. Käufl; Ulrike Heiter; Thomas Marquart; Guillem Anglada-Escudé; Dietrich Baade; Paul Bristow; Reinhold J. Dorn; Roman Follert; Domingo Gojak; J. Grunhut; A. Hatzes; Michael Hilker; Derek Ives; Yves Jung; Florian Kerber; Barbara Klein; Jean-Louis Lizon; Tom Löwinger; L. Origlia; Luca Pasquini; Jerome Paufique; Eszter Pozna; Ansgar Reiners; Ulf Seemann; Alain Smette
The CRIRES infrared spectrograph at the European Southern Observatory (ESO) Very Large Telescope (VLT) facility will soon receive an upgrade. This upgrade will include the addition of a module for performing highresolution spectropolarimetry. The polarimetry module will incorporate a novel infrared beamsplitter based on polarization gratings (PGs). The beamsplitter produces a pair of infrared output beams, with opposite circular polarizations, which are then fed into the spectrograph. Visible light passes through the module virtually unaltered and is then available for use by the CRIRES adaptive optics system. We present the design of the polarimetry module and measurements of PG behavior in the 1 to 2.7 μm wavelength range.
Proceedings of SPIE | 2014
Jean Louis Lizon; Barbara Klein; Ernesto Oliva; Tom Löwinger; Guillem Anglada Escude; Dietrich Baade; Paul Bristow; Reinhold J. Dorn; Roman Follert; J. Grunhut; A. Hatzes; Ulrike Heiter; Derek Ives; Yves Jung; Florian Kerber; Matt Lockhart; Thomas Marquart; L. Origlia; Luca Pasquini; Jerome Paufique; N. Piskunov; Eszter Pozna; Ansgar Reiners; Alain Smette; Jonathan Smoker; Ulf Seemann; Eric Stempels; E. Valenti
CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.