Barbara Liori
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Liori.
Early Human Development | 2014
Vassilios Fanos; Pierluigi Caboni; Giovanni Corsello; Mauro Stronati; Diego Gazzolo; Antonio Noto; Milena Lussu; Angelica Dessì; Mario Giuffrè; Serafina Lacerenza; Francesca Serraino; Francesca Garofoli; Laura D. Serpero; Barbara Liori; Roberta Carboni; Luigi Atzori
The purpose of this article is to study one of the most significant causes of neonatal morbidity and mortality: neonatal sepsis. This pathology is due to a bacterial or fungal infection acquired during the perinatal period. Neonatal sepsis has been categorized into two groups: early onset if it occurs within 3-6 days and late onset after 4-7 days. Due to the not-specific clinical signs, along with the inaccuracy of available biomarkers, the diagnosis is still a major challenge. In this regard, the use of a combined approach based on both nuclear magnetic resonance ((1)H-NMR) and gas-chromatography-mass spectrometry (GC-MS) techniques, coupled with a multivariate statistical analysis, may help to uncover features of the disease that are still hidden. The objective of our study was to evaluate the capability of the metabolomics approach to identify a potential metabolic profile related to the neonatal septic condition. The study population included 25 neonates (15 males and 10 females): 9 (6 males and 3 females) patients had a diagnosis of sepsis and 16 were healthy controls (9 males and 7 females). This study showed a unique metabolic profile of the patients affected by sepsis compared to non-affected ones with a statistically significant difference between the two groups (p = 0.05).
Journal of Agricultural and Food Chemistry | 2013
Pierluigi Caboni; Nadhem Aissani; Tiziana Cabras; Andrea Falqui; Roberto Marotta; Barbara Liori; Nikoletta Ntalli; Giorgia Sarais; Nicola Sasanelli; Graziella Tocco
The nematicidal activity of selected aromatic aldehydes was tested against the root knot nematode Meloidogyne incognita. The most active aldehyde was phthalaldehyde (1) with an EC(50) value of 11 ± 6 mg/L followed by salicylaldehyde (2) and cinnamic aldehyde (3) with EC(50) values of 11 ± 1 and 12 ± 5 mg/L, respectively. On the other hand, structurally related aldehydes such as 2-methoxybenzaldehyde (21), 3,4-dimethoxybenzaldehyde, and vanillin (23) were not active at the concentration of 1000 mg/L. By liquid chromatography-mass spectrometry the reactivity of tested aldehydes against a synthetic peptide resembling the nematode cuticle was characterized. At the test concentration of 1 mM, the main adduct formation was observed for 3,4-dihydroxybenzaldehyde (22), 2-methoxybenzaldehyde (21), and 3,4-dimethoxybenzaldehyde. Considering that 2-methoxybenzaldehyde (21) and 3,4-dimethoxybenzaldehyde were not active against M. incognita in in vitro experiments led us to hypothesize a different mechanism of action rather than an effect on the external cuticle modification of nematodes. When the toxicity of the V-ATPase inhibitor pyocyanin (10) was tested against M. incognita J2 nematodes, an EC(50) at 24 h of 72 ± 25 mg/L was found. The redox-active compounds such as phthalaldehyde (1) and salicylaldehyde (2) may share a common mode of action inhibiting nematode V-ATPase enzyme. The results of this investigation reveal that aromatic redox-active aldehydes can be considered as potent nematicides, and further investigation is needed to completely clarify their mode of action.
Journal of Agricultural and Food Chemistry | 2012
Pierluigi Caboni; Giorgia Sarais; Nadhem Aissani; Graziella Tocco; Nicola Sasanelli; Barbara Liori; Annarosa Carta; Alberto Angioni
New pesticides based on plant extracts have recently gained interest in the development of nontoxic crop protection chemicals. Numerous research studies are focused on the isolation and identification of new active compounds derived from plants. In this manuscript we report about the use of the Mediterranean species Capparis spinosa as a potent natural nematicidal agent against the root knot nematodes Meloidogyne incognita. Leaves, stems, and caper buds of Capparis spinosa were used to obtain their methanol extracts (LME, SME, BME) that were successively in vitro tested against second stage nematode juveniles (J2). In terms of paralysis induction, the methanol extract of the stem part (SME) was found more effective against M. incognita and then the caper methanol buds and leaves extracts. The chemical composition analysis of the extracts carried out by GC/MS and LC/MS techniques showed that methylisothiocyanate was the main compound of SME. The EC50 for SME after 3 days of immersion was 215 ± 36 mg/L. The constituent components of SME such as 2-thiophenecarboxaldehyde and methylisothiocyanate were successively in vitro tested for their nematicidal activity against J2. Both compounds induced paralysis on root knot nematodes ranking first (EC50 = 7.9 ± 1.6, and 14.1 ± 1.9 mg/L respectively) for M. incognita. Moreover, 2-thiophenecarboxaldehyde showed a strong fumigant activity.
Pesticide Biochemistry and Physiology | 2014
Pierluigi Caboni; Laura Tronci; Barbara Liori; Graziella Tocco; Nicola Sasanelli; Andrea Diana
Carbonyl groups are known to form covalent adducts with endogenous proteins, but so far, their nematicidal mechanism of action of has been overlooked. The nematicidal activity of ten lactones was tested in vitro against the root knot nematodes Meloidogyne incognita and Meloidogynearenaria. In particular, the saturated lactones α-methylene-γ-butyrolactone or tulipaline A (1) and γ-butyrolactone (3) were active against M. incognita with an EC50/48h of 19.3±10.0 and 40.0±16.2mg/L respectively. Moreover the α, β-unsaturated lactone 5,6-dihydro-2H-pyran-2-one (2) exhibited the strongest nematicidal activity against the two species with EC50/48h 14.5±5.3 and 21.2±9.7mg/L respectively. Here we propose that the toxic effects of lactones and aldehydes on M.incognita and M. arenaria might be a consequence of their vacuolar-type H(+)-ATPase (V-ATPase) inhibition activity; in fact α-methylene-γ-butyrolactone (1) and salicylaldehyde (12) produced an increased pH in lysosomal-like organelles on HeLa human cell line and this alteration was most likely related to a V-ATPase impairment.
PLOS ONE | 2014
Pierluigi Caboni; Barbara Liori; Amit Kumar; Maria Laura Santoru; Shailendra Asthana; Enrico Pieroni; Antonella Fais; Benedetta Era; Enrico Cacace; Valeria Ruggiero; Luigi Atzori
Fibromyalgia Syndrome (FMS) is a chronic disease characterized by widespread pain, and difficult to diagnose and treat. We analyzed the plasma metabolic profile of patients with FMS by using a metabolomics approach combining Liquid Chromatography-Quadrupole-Time Of Flight/Mass Spectrometry (LC-Q-TOF/MS) with multivariate statistical analysis, aiming to discriminate patients and controls. LC-Q-TOF/MS analysis of plasma (FMS patients: n = 22 and controls: n = 21) identified many lipid compounds, mainly lysophosphocholines (lysoPCs), phosphocholines and ceramides. Multivariate statistical analysis was performed to identify the discriminating metabolites. A protein docking and molecular dynamic (MD) study was then performed, using the most discriminating lysoPCs, to validate the binding to Platelet Activating Factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) Receptor (PAFr). Discriminating metabolites between FMS patients and controls were identified as 1-tetradecanoyl-sn-glycero-3-phosphocholine [PC(14∶0/0∶0)] and 1-hexadecanoyl-sn-glycero-3-phosphocholine [PC(16∶0/0∶0)]. MD and docking indicate that the ligands investigated have similar potentialities to activate the PAFr receptor. The application of a metabolomic approach discriminated FMS patients from controls, with an over-representation of PC(14∶0/0∶0) and PC(16∶0/0∶0) compounds in the metabolic profiles. These results and the modeling of metabolite-PAFr interaction, allowed us to hypothesize that lipids oxidative fragmentation might generate lysoPCs in abundance, that in turn will act as PAF-like bioactivators. Overall results suggest disease biomarkers and potential therapeutical targets for FMS.
Journal of Maternal-fetal & Neonatal Medicine | 2014
Angelica Dessì; Barbara Liori; Pierluigi Caboni; Giovanni Corsello; Mario Giuffrè; Antonio Noto; Francesca Serraino; Mauro Stronati; Marco Zaffanello; Vassilios Fanos
Abstract The objective of our study was to evaluate the capability of the metabolomics approach to identify the variations of urine metabolites over time related to the neonatal fungal septic condition. The study population included a clinical case of a preterm neonate with invasive fungal infection and 13 healthy preterm controls. This study showed a unique urine metabolic profile of the patient affected by fungal sepsis compared to urine of controls and it was also possible to evaluate the efficacy of therapy in improving patient health.
Journal of Separation Science | 2016
Barbara Manconi; Tiziana Cabras; Monica Sanna; Valentina Piras; Barbara Liori; Elisabetta Pisano; Federica Iavarone; Federica Vincenzoni; Massimo Cordaro; Gavino Faa; Massimo Castagnola; Irene Messana
In the present study, we show that the heterogeneous mixture of glycoforms of the basic salivary proline-rich protein 3M, encoded by PRB3-M locus, is a major component of the acidic soluble fraction of human whole saliva in the first years of life. Reversed-phase high-performance liquid chromatography with high-resolution electrospray ionization mass spectrometry analysis of the intact proteoforms before and after N-deglycosylation with Peptide-N-Glycosidase F and tandem mass spectrometry sequencing of peptides obtained after Endoproteinase GluC digestion allowed the structural characterization of the peptide backbone and identification of N- and O-glycosylation sites. The heterogeneous mixture of the proteoforms derives from the combination of 8 different neutral and sialylated glycans O-linked to Threonine 50, and 33 different glycans N-linked to Asparagine residues at positions 66, 87, 108, 129, 150, 171, 192, and 213.
Journal of Proteome Research | 2017
Barbara Manconi; Barbara Liori; Tiziana Cabras; Federica Vincenzoni; Federica Iavarone; Massimo Castagnola; Irene Messana; Alessandra Olianas
Cystatins are a complex family of cysteine peptidase inhibitors. In the present study, various proteoforms of cystatin A, cystatin B, cystatin S, cystatin SN, and cystatin SA were detected in the acid-soluble fraction of human saliva and characterized by a top-down HPLC-ESI-MS approach. Proteoforms of cystatin D were also detected and characterized by an integrated top-down and bottom-up strategy. The proteoforms derive from coding sequence polymorphisms and post-translational modifications, in particular, phosphorylation, N-terminal processing, and oxidation. This study increases the current knowledge of salivary cystatin proteoforms and provides the basis to evaluate possible qualitative/quantitative variations of these proteoforms in different pathological states and reveal new potential salivary biomarkers of disease. Data are available via ProteomeXchange with identifier PXD007170.
Archives of Oral Biology | 2017
Barbara Manconi; Barbara Liori; Tiziana Cabras; Federica Iavarone; Armando Manni; Irene Messana; Massimo Castagnola; Alessandra Olianas
OBJECTIVE This study aims to analyze the salivary peptidome/proteome of edentulous subject with respect to dentate control subjects. DESIGN Unstimulated whole saliva, collected from 11 edentulous subjects (age 60-76 years) and 11 dentate age-matched control subjects, was immediately treated with 0.2% aqueous trifluoroacetic acid and the acidic soluble fraction analyzed by High Performace Liquid Chromatography-Mass Spectrometry. The relative abundance of the salivary peptides/proteins was determined by measuring the area of the High Performace Liquid Chromatography-Mass Spectrometry eXtracted Ion Current peaks which is linearly proportional to peptide/protein concentration under identical experimental conditions. Levels of salivary peptides/proteins in the two groups were compared by the nonparametric Mann-Whitney test to evidence statistically significant differences. RESULTS Levels of cystatin A, S-glutathionylated, S-cystenylated, S-S dimer derivatives of cystatin B and S-glutathionylated derivative of SPRR3, were found significantly higher in edentulous subjects with respect to dentate controls. The major peptides and proteins typically deriving from salivary glands did not show any statistically significant differences. CONCLUSIONS Cystatin A, S-glutathionylated, S-cystenylated, S-S dimer derivatives of cystatin B and S-glutathionylated derivative of SPRR3, which are mainly of intracellular origin and represent the major constituents of the cornified cell envelope are a clue of inflammation of mucosal epithelia.
Journal of Proteomics | 2018
Barbara Manconi; Barbara Liori; Tiziana Cabras; F Vincenzoni; F Iavarone; Lorena Lorefice; Eleonora Cocco; Massimo Castagnola; I Messana; Alessandra Olianas
Multiple sclerosis is a chronic disease of the central nervous system characterized by inflammation, demyelination and neurodegeneration which is of undetermined origin. To date a single diagnostic test of multiple sclerosis does not exists and novel biomarkers are demanded for a more accurate and early diagnosis. In this study, we performed the quantitative analysis of 119 salivary peptides/proteins from 49 multiple sclerosis patients and 54 healthy controls by a mass spectrometry-based top-down proteomic approach. Statistical analysis evidenced different levels on 23 proteins: 8 proteins showed lower levels in multiple sclerosis patients with respect to controls and they were mono- and di-oxidized cystatin SN, mono- and di-oxidized cystatin S1, mono-oxidized cystatin SA and mono-phosphorylated statherin. 15 proteins showed higher levels in multiple sclerosis patients with respect to controls and they were antileukoproteinase, two proteoforms of Prolactin-Inducible Protein, P-C peptide (Fr.1-14, Fr. 26-44, and Fr. 36-44), SV1 fragment of statherin, cystatin SN Des1-4, cystatin SN P11 → L variant, and cystatin A T96 → M variant. The differences observed between the salivary proteomic profile of patients suffering from multiple sclerosis and healthy subjects is consistent with the inflammatory condition and altered immune response typical of the pathology. Data are available via ProteomeXchange with identifier PXD009440. SIGNIFICANCE To date a single diagnostic test of multiple sclerosis does not exist, and diagnosis is based on multiple tests which mainly include the analysis of cerebrospinal fluid. However, the need for lumbar puncture makes the analysis of cerebrospinal fluid impractical for monitoring disease activity and response to treatment. The possible use of saliva as a diagnostic fluid for oral and systemic diseases has been largely investigated, but only marginally in multiple sclerosis compared to other body fluids. Our study demonstrates that the salivary proteome of multiple sclerosis patients differs considerably compared to that of sex and age matched healthy individuals and suggests that some differences might be associated with the different disease-modifying therapy used to treat multiple sclerosis patients.