Barbara Mandriani
Casa Sollievo della Sofferenza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Mandriani.
Genome Research | 2015
Guntram Borck; Friederike Hög; Maria Lisa Dentici; Perciliz L. Tan; Nadine Sowada; Ana Medeira; Lucie Gueneau; Holger Thiele; Maria Kousi; Francesca Lepri; Larissa Wenzeck; Ian Blumenthal; Antonio Radicioni; Tito Livio Schwarzenberg; Barbara Mandriani; Rita Fischetto; Deborah J. Morris-Rosendahl; Janine Altmüller; Alexandre Reymond; Peter Nürnberg; Giuseppe Merla; Bruno Dallapiccola; Nicholas Katsanis; Patrick Cramer; Christian Kubisch
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Human Mutation | 2014
Lucia Micale; Bartolomeo Augello; Claudia Maffeo; Angelo Selicorni; Federica Zucchetti; Carmela Fusco; Pasquelena De Nittis; Maria Teresa Pellico; Barbara Mandriani; Rita Fischetto; Loredana Boccone; Margherita Silengo; Elisa Biamino; Chiara Perria; Stefano Sotgiu; Gigliola Serra; Elisabetta Lapi; Marcella Neri; Alessandra Ferlini; Maria Luigia Cavaliere; Pietro Chiurazzi; Matteo Della Monica; Gioacchino Scarano; Francesca Faravelli; Paola Ferrari; Laura Mazzanti; Alba Pilotta; Maria Grazia Patricelli; Maria Francesca Bedeschi; Francesco Benedicenti
Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6A mutations, three of them are novel. We found that a number of KMT2D truncating mutations result in mRNA degradation through the nonsense‐mediated mRNA decay, contributing to protein haploinsufficiency. Furthermore, we demonstrated that the reduction of KMT2D protein level in patients’ lymphoblastoid and skin fibroblast cell lines carrying KMT2D‐truncating mutations affects the expression levels of known KMT2D target genes. Finally, we hypothesized that the KS patients may benefit from a readthrough therapy to restore physiological levels of KMT2D and KDM6A proteins. To assess this, we performed a proof‐of‐principle study on 14 KMT2D and two KDM6A nonsense mutations using specific compounds that mediate translational readthrough and thereby stimulate the re‐expression of full‐length functional proteins. Our experimental data showed that both KMT2D and KDM6A nonsense mutations displayed high levels of readthrough in response to gentamicin treatment, paving the way to further studies aimed at eventually treating some Kabuki patients with readthrough inducers.
European Journal of Human Genetics | 2014
Carmela Fusco; Lucia Micale; Bartolomeo Augello; Maria Teresa Pellico; Deny Menghini; Paolo Alfieri; Maria Cristina Digilio; Barbara Mandriani; Massimo Carella; Orazio Palumbo; Stefano Vicari; Giuseppe Merla
Williams Beuren syndrome (WBS) is a multisystemic disorder caused by a hemizygous deletion of 1.5 Mb on chromosome 7q11.23 spanning 28 genes. A few patients with larger and smaller WBS deletion have been reported. They show clinical features that vary between isolated SVAS to the full spectrum of WBS phenotype, associated with epilepsy or autism spectrum behavior. Here we describe four patients with atypical WBS 7q11.23 deletions. Two carry ∼3.5 Mb larger deletion towards the telomere that includes Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxigenase activation protein gamma (YWHAG) genes. Other two carry a shorter deletion of ∼1.2 Mb at centromeric side that excludes the distal WBS genes BAZ1B and FZD9. Along with previously reported cases, genotype–phenotype correlation in the patients described here further suggests that haploinsufficiency of HIP1 and YWHAG might cause the severe neurological and neuropsychological deficits including epilepsy and autistic traits, and that the preservation of BAZ1B and FZD9 genes may be related to mild facial features and moderate neuropsychological deficits. This report highlights the importance to characterize additional patients with 7q11.23 atypical deletions comparing neuropsychological and clinical features between these individuals to shed light on the pathogenic role of genes within and flanking the WBS region.
Human Mutation | 2014
Ali Abdullah Alfaiz; Lucia Micale; Barbara Mandriani; Bartolomeo Augello; Maria Teresa Pellico; Jacqueline Chrast; Ioannis Xenarios; Leopoldo Zelante; Giuseppe Merla; Alexandre Reymond
TBC1D7 forms a complex with TSC1 and TSC2 that inhibits mTORC1 signaling and limits cell growth. Mutations in TBC1D7 were reported in a family with intellectual disability (ID) and macrocrania. Using exome sequencing, we identified two sisters homozygote for the novel c.17_20delAGAG, p.R7TfsX21 TBC1D7 truncating mutation. In addition to the already described macrocephaly and mild ID, they share osteoarticular defects, patella dislocation, behavioral abnormalities, psychosis, learning difficulties, celiac disease, prognathism, myopia, and astigmatism. Consistent with a loss‐of‐function of TBC1D7, the patients cell lines show an increase in the phosphorylation of 4EBP1, a direct downstream target of mTORC1 and a delay in the initiation of the autophagy process. This second family allows enlarging the phenotypic spectrum associated with TBC1D7 mutations and defining a TBC1D7 syndrome. Our work reinforces the involvement of TBC1D7 in the regulation of mTORC1 pathways and suggests an altered control of autophagy as possible cause of this disease.
American Journal of Human Genetics | 2016
Elisabeth M. Lodder; Pasquelena De Nittis; Charlotte D. Koopman; Wojciech Wiszniewski; Carolina Fischinger Moura de Souza; Najim Lahrouchi; Nicolas Guex; Valerio Napolioni; Federico Tessadori; Leander Beekman; Eline A. Nannenberg; Lamiae Boualla; Nico A. Blom; Wim de Graaff; Maarten Kamermans; Dario Cocciadiferro; Natascia Malerba; Barbara Mandriani; Zeynep Coban Akdemir; Richard J. Fish; Mohammad K. Eldomery; Ilham Ratbi; Arthur A.M. Wilde; Teun P. de Boer; William F. Simonds; Marguerite Neerman-Arbez; V. Reid Sutton; Fernando Kok; James R. Lupski; Alexandre Reymond
GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.
BMC Cancer | 2015
Lucia Micale; Carmela Fusco; Andrea Fontana; Raffaela Barbano; Bartolomeo Augello; Pasquelena De Nittis; Massimiliano Copetti; Maria Teresa Pellico; Barbara Mandriani; Dario Cocciadiferro; Paola Parrella; Vito Michele Fazio; Lucia Dimitri; Vincenzo D’Angelo; Chiara Novielli; Lidia Larizza; Antonio Daga; Giuseppe Merla
BackgroundHuman gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma.MethodsTRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays.ResultsWe showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient’s glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3′ UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8.ConclusionsOur study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients.
Cellular Signalling | 2014
Carmela Fusco; Lucia Micale; Bartolomeo Augello; Barbara Mandriani; Maria Teresa Pellico; Pasquelena De Nittis; Alessia Calcagnì; Maria Chiara Monti; Flora Cozzolino; Piero Pucci; Giuseppe Merla
The E3 Ubiquitin ligase TRIM50 promotes the formation and clearance of aggresome-associated polyubiquitinated proteins through HDAC6 interaction, a tubulin specific deacetylase that regulates microtubule-dependent aggresome formation. In this report we showed that TRIM50 is a target of HDAC6 with Lys-372 as a critical residue for acetylation. We identified p300 and PCAF as two TRIM50 acetyltransferases and we further showed that a balance between ubiquitination and acetylation regulates TRIM50 degradation.
American Journal of Human Genetics | 2016
Elisabeth M. Lodder; Pasquelena De Nittis; Charlotte D. Koopman; Wojciech Wiszniewski; Carolina Fischinger Moura de Souza; Najim Lahrouchi; Nicolas Guex; Valerio Napolioni; Federico Tessadori; Leander Beekman; Eline A. Nannenberg; Lamiae Boualla; Nico A. Blom; Wim de Graaff; Maarten Kamermans; Dario Cocciadiferro; Natascia Malerba; Barbara Mandriani; Zeynep Coban Akdemir; Richard J. Fish; Mohammad K. Eldomery; Ilham Ratbi; Arthur A.M. Wilde; Teun P. de Boer; William F. Simonds; Marguerite Neerman-Arbez; V. Reid Sutton; Fernando Kok; James R. Lupski; Alexandre Reymond
GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision. LODDER, Elisabeth M, DE NITTIS, Pasquelena, KOOPMAN, Charlotte D & Collaboration, FISH, Richard (Collab.), et al. GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability. American Journal of Human Genetics, 2016, vol. 99, no. 3, p. 704-710
Scientific Reports | 2016
Barbara Mandriani; Stefano Castellana; Carmela Rinaldi; Marta Manzoni; Santina Venuto; Eva Rodriguez-Aznar; Juan Galceran; M. Angela Nieto; Giuseppe Borsani; Eugenio Monti; Tommaso Mazza; Giuseppe Merla; Lucia Micale
To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species.
Biochimica et Biophysica Acta | 2018
Carmela Fusco; Barbara Mandriani; Martina Di Rienzo; Lucia Micale; Natascia Malerba; Dario Cocciadiferro; Eva Sjøttem; Bartolomeo Augello; Gabriella Maria Squeo; Maria Teresa Pellico; Ashish Jain; Terje Johansen; Gian Maria Fimia; Giuseppe Merla
Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation.