Bárbara Meléndez
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bárbara Meléndez.
Molecular Cancer | 2006
Yolanda Ruano; Manuela Mollejo; Teresa Ribalta; Concepción Fiaño; Francisca I. Camacho; Elena Gómez; Ángel Rodríguez de Lope; José-Luis Hernández-Moneo; Pedro Miralles Martínez; Bárbara Meléndez
BackgroundConventional cytogenetic and comparative genomic hybridization (CGH) studies in brain malignancies have shown that glioblastoma multiforme (GBM) is characterized by complex structural and numerical alterations. However, the limited resolution of these techniques has precluded the precise identification of detailed specific gene copy number alterations.ResultsWe performed a genome-wide survey of gene copy number changes in 20 primary GBMs by CGH on cDNA microarrays. A novel amplicon at 4p15, and previously uncharacterized amplicons at 13q32-34 and 1q32 were detected and are analyzed here. These amplicons contained amplified genes not previously reported. Other amplified regions containg well-known oncogenes in GBMs were also detected at 7p12 (EGFR), 7q21 (CDK6), 4q12 (PDGFRA), and 12q13-15 (MDM2 and CDK4). In order to identify the putative target genes of the amplifications, and to determine the changes in gene expression levels associated with copy number change events, we carried out parallel gene expression profiling analyses using the same cDNA microarrays. We detected overexpression of the novel amplified genes SLA/LP and STIM2 (4p15), and TNFSF13B and COL4A2 (13q32-34). Some of the candidate target genes of amplification (EGFR, CDK6, MDM2, CDK4, and TNFSF13B) were tested in an independent set of 111 primary GBMs by using FISH and immunohistological assays. The novel candidate 13q-amplification target TNFSF13B was amplified in 8% of the tumors, and showed protein expression in 20% of the GBMs.ConclusionThis high-resolution analysis allowed us to propose novel candidate target genes such as STIM2 at 4p15, and TNFSF13B or COL4A2 at 13q32-34 that could potentially contribute to the pathogenesis of these tumors and which would require futher investigations. We showed that overexpression of the amplified genes could be attributable to gene dosage and speculate that deregulation of those genes could be important in the development and progression of GBM. Our findings highlight the important influence in GBM of signaling pathways such as the PI3K/AKT, consistent with the invasive features of this tumor.
Clinical Cancer Research | 2004
Beatriz Martínez-Delgado; Bárbara Meléndez; Marta Cuadros; Javier Alvarez; José M. Castrillo; Ana Ruiz de la Parte; Manuela Mollejo; Carmen Bellas; Ramon Diaz; Luis Lombardia; Fatima Al-Shahrour; Orlando Domínguez; Alberto Cascón; Mercedes Robledo; Carmen Rivas; Javier Benitez
Purpose: T-Cell lymphomas constitute heterogeneous and aggressive tumors in which pathogenic alterations remain largely unknown. Expression profiling has demonstrated to be a useful tool for molecular classification of tumors. Experimental Design: Using DNA microarrays (CNIO-OncoChip) containing 6386 cancer-related genes, we established the expression profiling of T-cell lymphomas and compared them to normal lymphocytes and lymph nodes. Results: We found significant differences between the peripheral and lymphoblastic T-cell lymphomas, which include a deregulation of nuclear factor-κB signaling pathway. We also identify differentially expressed genes between peripheral T-cell lymphoma tumors and normal T lymphocytes or reactive lymph nodes, which could represent candidate tumor markers of these lymphomas. Additionally, a close relationship between genes associated to survival and those that differentiate among the stages of disease and responses to therapy was found. Conclusions: Our results reflect the value of gene expression profiling to gain insight about the molecular alterations involved in the pathogenesis of T-cell lymphomas.
Oncogene | 1997
Marcos Malumbres; Ignacio Pérez de Castro; Javier Santos; Bárbara Meléndez; Ramon Mangues; Manuel Serrano; Angel Pellicer; José Fernández-Piqueras
A wide panel of murine induced T-cell lymphomas have been analysed for p16INK4a or p15INK4b alterations. Only one γ-radiation-induced lymphoma showed p16INK4a homozygous deletion and no other intragenic mutations were found in these INK4 genes. However, de novo methylation of the 5′ CpG islands of the murine p15INK4b and p16INK4a genes was found to be highly frequent. While p16INK4a hypermethylation was found in 36% of the neutron-radiation-induced lymphomas and 15% of the γ-radiation-induced lymphomas, de novo methylation of p15INK4b occurs in 88% and 42% of these tumors respectively, correlating with deficient expression of the corresponding mRNA and allelic losses in the p15INK4b and p16INK4a chromosome location. These data represent, to our knowledge, the first report on the significant involvement of hypermethylation of these INK4 genes in murine primary tumors. Moreover, they show the importance of allelic losses and CpG island methylation of p15INK4b gene inactivation and support a tumor suppressor role for p15INK4b in T-cell lymphomas independent of p16INK4a .
Molecular and Cellular Biology | 2011
Guillermo de Cárcer; Beatriz Escobar; Alonso M. Higuero; Laura García; Alejandra Ansón; Gema Pérez; Manuela Mollejo; Gerard Manning; Bárbara Meléndez; José Abad-Rodríguez; Marcos Malumbres
ABSTRACT Polo-like kinases (Plks) are characterized by the presence of a specific domain, known as the polo box (PBD), involved in protein-protein interactions. Plk1 to Plk4 are involved in centrosome biology as well as the regulation of mitosis, cytokinesis, and cell cycle checkpoints in response to genotoxic stress. We have analyzed here the new member of the vertebrate family, Plk5, a protein that lacks the kinase domain in humans. Plk5 does not seem to have a role in cell cycle progression; in fact, it is downregulated in proliferating cells and accumulates in quiescent cells. This protein is mostly expressed in the brain of both mice and humans, and it modulates the formation of neuritic processes upon stimulation of the brain-derived neurotrophic factor (BDNF)/nerve growth factor (NGF)-Ras pathway in neurons. The human PLK5 gene is significantly silenced in astrocytoma and glioblastoma multiforme by promoter hypermethylation, suggesting a tumor suppressor function for this gene. Indeed, overexpression of Plk5 has potent apoptotic effects in these tumor cells. Thus, Plk5 seems to have evolved as a kinase-deficient PBD-containing protein with nervous system-specific functions and tumor suppressor activity in brain cancer.
International Journal of Cancer | 2002
Beatriz Martínez-Delgado; Bárbara Meléndez; Marta Cuadros; María J. García; Josep Nomdedeu; Carmen Rivas; José Fernández-Piqueras; Javier Benitez
p73 is a candidate tumor suppressor and imprinted gene that shares significant homology with the p53 gene. It is located on 1p36, a region frequently deleted in neuroblastoma and other tumors. To investigate the pattern of inactivation of this gene in human lymphomas, we studied 59 tumors to identify abnormal methylation in exon 1 and loss of heterozygosity (LOH) at this locus. p73 was methylated in 13/50 (26%) B cell lymphomas. There was no evidence of p73 methylation in the 9 T cell lymphomas analyzed. Burkitts lymphomas showed the highest proportion of methylated cases (36%), although this alteration also affected other aggressive lymphomas such as diffuse large cell and some marginal zone lymphomas. LOH at the p73 locus was detected in 4/34 (11%) B and 1/9 (11%) T cell lymphomas. The p73 expression analysis showed absence or low level of p73 product in methylated lymphomas, whereas p73 was always detected in unmethylated tumors. We found monoallelic expression in normal peripheral blood samples, consistent with imprinting. None of the tumors showed LOH and methylation of the remaining allele simultaneously, suggesting that alteration of the expressed allele could lead to the total inactivation of the gene. Our results show that deletion or methylation of the p73 gene could be important mechanisms in suppressing p73 expression in B cell non‐Hodgkins lymphomas.
American Journal of Clinical Pathology | 2009
Yolanda Ruano; Teresa Ribalta; Ángel Rodríguez de Lope; Yolanda Campos-Martín; Concepción Fiaño; Elisa Pérez-Magán; José-Luis Hernández-Moneo; Manuela Mollejo; Bárbara Meléndez
Primary glioblastoma multiforme (GBM), in contrast with secondary GBM, has been associated with the presence of EGFR amplification and absence of p53 mutation. In this study, we analyzed relevant molecular and clinical variables in 194 primary GBMs and tested them for survival analysis. Although most of the tumors showed a mutually exclusive pattern, concurrent alterations of EGFR and p53 were detected. Survival analysis of CDK4 amplification revealed a highly significant association with a worse clinical outcome (P = .01), whereas MDM2, CDK6, PTEN, and p21 were not associated with patient survival. Multivariate analysis including the significant clinical and molecular variables revealed CDK4 amplification, age, and radiotherapy to be markers with independent prognostic value. In addition, the primary GBM tumors showing simultaneous EGFR and p53 alterations were significantly associated with worse survival (P < .01). These results highlight the prognostic value of CDK4 amplification and of simultaneous EGFR-p53 alterations in the clinical outcome of patients with primary GBM.
Cancer | 2008
Yolanda Ruano; Manuela Mollejo; Francisca I. Camacho; Ángel Rodríguez de Lope; Concepción Fiaño; Teresa Ribalta; Pedro Miralles Martínez; José-Luis Hernández-Moneo; Bárbara Meléndez
Knowledge of the molecular mechanisms involved in the biology of glioblastoma multiforme (GBM) is essential for the identification of candidate prognostic markers, new putative therapeutic targets, and early detection strategies predictive of survival.
Cell Death & Differentiation | 2011
Mar Lorente; Sofia Torres; María Salazar; Arkaitz Carracedo; Sonia Hernández-Tiedra; Fátima Rodríguez-Fornés; Elena García-Taboada; Bárbara Meléndez; Manuela Mollejo; Yolanda Campos-Martín; S A Lakatosh; Juan Barcia; Manuel Guzmán; Guillermo Velasco
Identifying the molecular mechanisms responsible for the resistance of gliomas to anticancer treatments is an issue of great therapeutic interest. Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. Here, by analyzing the gene expression profile of a large series of human glioma cells with different sensitivity to cannabinoid action, we have identified a subset of genes specifically associated to THC resistance. One of these genes, namely that encoding the growth factor midkine (Mdk), is directly involved in the resistance of glioma cells to cannabinoid treatment. We also show that Mdk mediates its protective effect via the anaplastic lymphoma kinase (ALK) receptor and that Mdk signaling through ALK interferes with cannabinoid-induced autophagic cell death. Furthermore, in vivo Mdk silencing or ALK pharmacological inhibition sensitizes cannabinod-resistant tumors to THC antitumoral action. Altogether, our findings identify Mdk as a pivotal factor involved in the resistance of glioma cells to THC pro-autophagic and antitumoral action, and suggest that selective targeting of the Mdk/ALK axis could help to improve the efficacy of antitumoral therapies for gliomas.
Journal of Neuropathology and Experimental Neurology | 2012
Elisa Pérez-Magán; Yolanda Campos-Martín; Pilar Mur; Concepción Fiaño; Teresa Ribalta; Juan F. García; Juan A. Rey; Ángel Rodríguez de Lope; Manuela Mollejo; Bárbara Meléndez
Abstract Meningiomas are the most common primary brain tumors; they arise from the coverings of the brain. Although meningiomas are generally benign, some are more clinically aggressive, as reflected by their histopathological features or by their unexpected recurrence. We hypothesized that recurrent histologically benign meningiomas might have genetic features in common with those showing a more aggressive histology. By comparing gene expression profiles associated with meningioma progression and recurrence in 128 tumor samples (i.e. 83 benign World Health Organization [WHO] Grade I, 37atypical WHO Grade II, and 8 anaplastic WHO Grade III) from121patients, we identified a 49-gene signature of meningioma aggressivity. This signature classified the tumors into 2 groups showing different clinical and pathological behaviors. The signature was composed of genes involved in the cell cycle (TMEM30B, CKS2, and UCHL1) and other pathways previously described as being altered in meningiomas, that is, WNT (SFRP1 and SFRP4) and transforming growth factor-&bgr; pathways (LTBP2 and LMO4). Overall, gene downregulation was observed in advanced and recurrentsamples versus benign and original ones. We propose that this gene repression may be caused by gene promoter hypermethylation, as in the case of UCHL1 and SFRP1, suggesting that this epigenetic event, together with loss of specific chromosomal regions, may play an important role in meningioma progression and recurrence.
Neuro-oncology | 2010
Elisa Pérez-Magán; Ángel Rodríguez de Lope; Teresa Ribalta; Yolanda Ruano; Yolanda Campos-Martín; Gerardo Pérez-Bautista; Juan F. García; Ainoha García-Claver; Concepción Fiaño; José-Luis Hernández-Moneo; Manuela Mollejo; Bárbara Meléndez
The majority of meningiomas are probably benign but a number of tumors display considerable histological and/or clinical aggressivity, sometimes with unexpectedly high recurrence rates after radical removal. Understanding the potential behavior of these tumors in individual patients is critical for rational therapeutic decision-making. This study aimed to identify gene expression profiles and candidate markers associated with original and recurrent meningiomas. Unsupervised hierarchical clustering of the samples confirmed 2 main groups of meningiomas with distinct clinical behaviors. The gene expression profiling study identified genes and pathways potentially associated with meningioma recurrence, revealing an overall lower level of gene expression. The differential gene expression profiling analyses of original and recurrent meningiomas identified 425 known genes and expressed sequence tags related to meningioma recurrence, with SFRP1 (8p12), TMEM30B (14q23), and CTGF (6q23) showing the most disparate expression. Most of the differentially expressed genes were located at 1p, 6q, and 14q and were underexpressed in recurrences. Loss of such chromosomal regions has previously been associated with a higher risk of meningioma recurrence or malignant progression. Thus, at these locations, we propose the existence of novel candidate genes that could be involved in meningioma recurrence. In addition, the overexpression of genes of histone cluster 1 (6p) in recurrent meningiomas is reported here for the first time. Finally, the altered genes related to meningioma recurrence are involved in pathways such as Notch, TGFβ, and Wnt, as described previously, and in other pathways such as cell cycle, oxidative phosphorylation, PPAR, and PDGF, not related before to meningioma recurrence.