Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Mlody is active.

Publication


Featured researches published by Barbara Mlody.


Stem Cells | 2014

HIF1α Modulates Cell Fate Reprogramming Through Early Glycolytic Shift and Upregulation of PDK1–3 and PKM2

Alessandro Prigione; Nadine Rohwer; Sheila Hoffmann; Barbara Mlody; Katharina Drews; Raul Bukowiecki; Katharina Blümlein; Erich E. Wanker; Markus Ralser; Thorsten Cramer; James Adjaye

Reprogramming somatic cells to a pluripotent state drastically reconfigures the cellular anabolic requirements, thus potentially inducing cancer‐like metabolic transformation. Accordingly, we and others previously showed that somatic mitochondria and bioenergetics are extensively remodeled upon derivation of induced pluripotent stem cells (iPSCs), as the cells transit from oxidative to glycolytic metabolism. In the attempt to identify possible regulatory mechanisms underlying this metabolic restructuring, we investigated the contributing role of hypoxia‐inducible factor one alpha (HIF1α), a master regulator of energy metabolism, in the induction and maintenance of pluripotency. We discovered that the ablation of HIF1α function in dermal fibroblasts dramatically hampers reprogramming efficiency, while small molecule‐based activation of HIF1α significantly improves cell fate conversion. Transcriptional and bioenergetic analysis during reprogramming initiation indicated that the transduction of the four factors is sufficient to upregulate the HIF1α target pyruvate dehydrogenase kinase (PDK) one and set in motion the glycolytic shift. However, additional HIF1α activation appears critical in the early upregulation of other HIF1α‐associated metabolic regulators, including PDK3 and pyruvate kinase (PK) isoform M2 (PKM2), resulting in increased glycolysis and enhanced reprogramming. Accordingly, elevated levels of PDK1, PDK3, and PKM2 and reduced PK activity could be observed in iPSCs and human embryonic stem cells in the undifferentiated state. Overall, the findings suggest that the early induction of HIF1α targets may be instrumental in iPSC derivation via the activation of a glycolytic program. These findings implicate the HIF1α pathway as an enabling regulator of cellular reprogramming. Stem Cells 2014;32:364–376


PLOS ONE | 2012

Identification of Biomarkers of Human Skin Ageing in Both Genders. Wnt Signalling - A Label of Skin Ageing?

Evgenia Makrantonaki; Thore C. Brink; Vasiliki A. Zampeli; Rana Elewa; Barbara Mlody; Amir M. Hossini; Bjoern Hermes; Ulf Krause; Juergen Knolle; Marwa Abdallah; James Adjaye; Christos C. Zouboulis

The goal of our work has been to investigate the mechanisms of gender-independent human skin ageing and examine the hypothesis of skin being an adequate model of global ageing. For this purpose, whole genome gene profiling was employed in sun-protected skin obtained from European Caucasian young and elderly females (mean age 26.7±4 years [n1 = 7] and 70.75±3.3 years [n2 = 4], respectively) and males (mean age 25.8±5.2 years [n3 = 6] and 76±3.8 years [n4 = 7], respectively) using the Illumina array platform. Confirmation of gene regulation was performed by real-time RT-PCR and immunohistochemistry. 523 genes were significantly regulated in female skin and 401 genes in male skin for the chosen criteria. Of these, 183 genes exhibited increased and 340 decreased expression in females whereas 210 genes showed increased and 191 decreased expression in males with age. In total, 39 genes were common in the target lists of significant regulated genes in males and females. 35 of these genes showed increased (16) or decreased (19) expression independent of gender. Only 4 overlapping genes (OR52N2, F6FR1OP2, TUBAL3 and STK40) showed differential regulation with age. Interestingly, Wnt signalling pathway showed to be significantly downregulated in aged skin with decreased gene and protein expression for males and females, accordingly. In addition, several genes involved in central nervous system (CNS) ageing (f.i. APP, TAU) showed to be expressed in human skin and were significanlty regulated with age. In conclusion, our study provides biomarkers of endogenous human skin ageing in both genders and highlight the role of Wnt signalling in this process. Furthermore, our data give evidence that skin could be used as a good alternative to understand ageing of different tissues such as CNS.


Cell Stem Cell | 2017

Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders

Carmen Lorenz; Pierre Lesimple; Raul Bukowiecki; Annika Zink; Gizem Inak; Barbara Mlody; Manvendra Singh; Marcus Semtner; Nancy Mah; Karine Auré; Megan Leong; Oleksandr Zabiegalov; Ekaterini-Maria Lyras; Vanessa Pfiffer; Beatrix Fauler; Jenny Eichhorst; Burkhard Wiesner; Norbert Huebner; Josef Priller; Thorsten Mielke; David Meierhofer; Zsuzsanna Izsvák; Jochen C. Meier; Frédéric Bouillaud; James Adjaye; Markus Schuelke; Erich E. Wanker; Anne Lombès; Alessandro Prigione

Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system.


Advanced Materials | 2013

Current Methods for Inducing Pluripotency in Somatic Cells

Geertrui Tavernier; Barbara Mlody; Jo Demeester; James Adjaye; Stefaan C. De Smedt

The groundbreaking discovery of reprogramming fibroblasts towards pluripotency merely by introducing four transcription factors (OCT4, SOX2, KLF4 and c-MYC) by means of retroviral transduction has created a promising revolution in the field of regenerative medicine. These so-called induced pluripotent stem cells (iPSCs) can provide a cell source for disease-modelling, drug-screening platforms, and transplantation strategies to treat incurable degenerative diseases, while circumventing the ethical issues and immune rejections associated with the use of non-autologous embryonic stem cells. The risk of insertional mutagenesis, caused both by the viral and transgene nature of the technique has proven to be the major limitation for iPSCs to be used in a clinical setting. In view of this, a variety of alternative techniques have been developed to induce pluripotency in somatic cells. This review provides an overview on current reprogramming protocols, discusses their pros and cons and future challenges to provide safe and transgene-free iPSCs.


Seminars in Cell & Developmental Biology | 2016

Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders.

Barbara Mlody; Carmen Lorenz; Gizem Inak; Alessandro Prigione

The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy.


The International Journal of Developmental Biology | 2012

Comparative molecular portraits of human unfertilized oocytes and primordial germ cells at 10 weeks of gestation.

Ferdinand Diedrichs; Barbara Mlody; Peggy Matz; Heiko Fuchs; Lukas Chavez; Katharina Drews; James Adjaye

Primordial germ cells (PGCs) are precursors of gametes and share several features in common with pluripotent stem cells, such as alkaline phosphatase activity and the expression of pluripotency-associated genes such as OCT4 and NANOG. PGCs are able to differentiate into oocytes and spermatogonia and establish totipotency after fertilization. However, our knowledge of human germ cell development is still fragmentary. In this study, we have carried out genome-wide comparisons of the transcriptomes and molecular portraits of human male PGCs (mPGCs), female PGCs (fPGCs) and unfertilized oocytes. We detected 9210 genes showing elevated expression in fPGCs, 9184 in mPGCs and 9207 in oocytes, with 6342 of these expressed in common. As well as known germ cell-related genes such as BLIMP1/PRDM1, PIWIL2, VASA/DDX4, DAZL, STELLA/DPPA3 and LIN28, we also identified 465 novel non-annotated genes with orthologs in the mouse. A plethora of olfactory receptor-encoding genes were detected in all samples, which would suggest their involvement not only in sperm chemotaxis, but also in the development of female germ cells and oocytes. We anticipate that our data might increase our meagre knowledge of the genes and associated signaling pathways operative during germ cell development. This in turn might aid in the development of strategies enabling better differentiation and molecular characterisation of germ cells derived from either embryonic or induced pluripotent stem cells. Ultimately, this would have a profound relevance for reproductive as well as regenerative medicine.


The EMBO Journal | 2017

Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex

Annika Scior; Alexander Buntru; Kristin Arnsburg; Anne Ast; Manuel Iburg; Katrin Juenemann; Maria Lucia Pigazzini; Barbara Mlody; Dmytro Puchkov; Josef Priller; Erich E. Wanker; Alessandro Prigione; Janine Kirstein

Huntingtons disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat in the huntingtin gene (HTT). Molecular chaperones have been implicated in suppressing or delaying the aggregation of mutant Htt. Using in vitro and in vivo assays, we have identified a trimeric chaperone complex (Hsc70, Hsp110, and J‐protein) that completely suppresses fibrilization of HttExon1Q48. The composition of this chaperone complex is variable as recruitment of different chaperone family members forms distinct functional complexes. The trimeric chaperone complex is also able to resolubilize Htt fibrils. We confirmed the biological significance of these findings in HD patient‐derived neural cells and on an organismal level in Caenorhabditis elegans. Among the proteins in this chaperone complex, the J‐protein is the concentration‐limiting factor. The single overexpression of DNAJB1 in HEK293T cells is sufficient to profoundly reduce HttExon1Q97 aggregation and represents a target of future therapeutic avenues for HD.


Stem Cells | 2017

Concise Review: Induced Pluripotent Stem Cell‐Based Drug Discovery for Mitochondrial Disease

Gizem Inak; Carmen Lorenz; Paweł Lisowski; Annika Zink; Barbara Mlody; Alessandro Prigione

High attrition rates and loss of capital plague the drug discovery process. This is particularly evident for mitochondrial disease that typically involves neurological manifestations and is caused by nuclear or mitochondrial DNA defects. This group of heterogeneous disorders is difficult to target because of the variability of the symptoms among individual patients and the lack of viable modeling systems. The use of induced pluripotent stem cells (iPSCs) might significantly improve the search for effective therapies for mitochondrial disease. iPSCs can be used to generate patient‐specific neural cell models in which innovative compounds can be identified or validated. Here we discuss the promises and challenges of iPSC‐based drug discovery for mitochondrial disease with a specific focus on neurological conditions. We anticipate that a proper use of the potent iPSC technology will provide critical support for the development of innovative therapies against these untreatable and detrimental disorders. Stem Cells 2017;35:1655–1662


Stem Cell Research | 2015

Generation of iPSC lines from a Nijmegen Breakage Syndrome patient.

Barbara Mlody; James Adjaye

Human dermal fibroblasts from a Nijmegen Breakage Syndrome (NBS) patient bearing the 657del5 mutation within the DNA repair gene NIBRIN were used to generate two iPSC-lines (vNBS8-iPS-c1, vNBS8-iPS-c2) by retroviral transduction of OCT4, SOX2, c-MYC and KLF4. Pluripotency was confirmed both in vivo and in vitro.


EMBO Reports | 2018

Mitochondria and the dynamic control of stem cell homeostasis

Paweł Lisowski; Preethi Kannan; Barbara Mlody; Alessandro Prigione

The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell‐based medical applications.

Collaboration


Dive into the Barbara Mlody's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Adjaye

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Carmen Lorenz

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Erich E. Wanker

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Paweł Lisowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Buntru

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge