Barbara Mosca
University of Ferrara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Mosca.
The Journal of Physiology | 2009
Susan Treves; Mirko Vukcevic; Marcin Maj; Raphael Thurnheer; Barbara Mosca; Francesco Zorzato
In striated muscle, activation of contraction is initiated by membrane depolarisation caused by an action potential, which triggers the release of Ca2+ stored in the sarcoplasmic reticulum by a process called excitation–contraction coupling. Excitation–contraction coupling occurs via a highly sophisticated supramolecular signalling complex at the junction between the sarcoplasmic reticulum and the transverse tubules. It is generally accepted that the core components of the excitation–contraction coupling machinery are the dihydropyridine receptors, ryanodine receptors and calsequestrin, which serve as voltage sensor, Ca2+ release channel, and Ca2+ storage protein, respectively. Nevertheless, a number of additional proteins have been shown to be essential both for the structural formation of the machinery involved in excitation–contraction coupling and for its fine tuning. In this review we discuss the functional role of minor sarcoplasmic reticulum protein components. The definition of their roles in excitation–contraction coupling is important in order to understand how mutations in genes involved in Ca2+ signalling cause neuromuscular disorders.
American Journal of Physiology-cell Physiology | 2012
Serge Summermatter; Raphael Thurnheer; Gesa Santos; Barbara Mosca; Oliver Baum; Susan Treves; Hans Hoppeler; Francesco Zorzato; Christoph Handschin
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.
Nature Communications | 2013
Barbara Mosca; Osvaldo Delbono; María Laura Messi; Leda Bergamelli; Zhong-Min Wang; Mirko Vukcevic; Ruben Lopez; Susan Treves; Miyuki Nishi; Hiroshi Takeshima; Cecilia Paolini; Marta Martini; Giorgio Rispoli; Feliciano Protasi; Francesco Zorzato
Muscle strength declines with age in part due to a decline of Ca(2+) release from sarcoplasmic reticulum calcium stores. Skeletal muscle dihydropyridine receptors (Ca(v)1.1) initiate muscle contraction by activating ryanodine receptors in the sarcoplasmic reticulum. Ca(v)1.1 channel activity is enhanced by a retrograde stimulatory signal delivered by the ryanodine receptor. JP45 is a membrane protein interacting with Ca(v)1.1 and the sarcoplasmic reticulum Ca(2+) storage protein calsequestrin (CASQ1). Here we show that JP45 and CASQ1 strengthen skeletal muscle contraction by modulating Ca(v)1.1 channel activity. Using muscle fibres from JP45 and CASQ1 double knockout mice, we demonstrate that Ca(2+) transients evoked by tetanic stimulation are the result of massive Ca(2+) influx due to enhanced Ca(v)1.1 channel activity, which restores muscle strength in JP45/CASQ1 double knockout mice. We envision that JP45 and CASQ1 may be candidate targets for the development of new therapeutic strategies against decay of skeletal muscle strength caused by a decrease in sarcoplasmic reticulum Ca(2+) content.
Human Molecular Genetics | 2015
Ori Rokach; Marijana Sekulic-Jablanovic; Nicol C. Voermans; Jo M. Wilmshurst; Komala Pillay; Luc Heytens; Haiyan Zhou; Francesco Muntoni; Mathias Gautel; Yoram Nevo; Stella Mitrani-Rosenbaum; Ruben Attali; Alessia Finotti; Roberto Gambari; Barbara Mosca; Heinz Jungbluth; Francesco Zorzato; Susan Treves
Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs, increased DNA methylation and increased expression of class II histone deacetylases. Transgenic mouse muscle fibres over-expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular disorders.
Biochemical Journal | 2012
Susan Treves; Raphael Thurnheer; Barbara Mosca; Mirko Vukcevic; Leda Bergamelli; Rebecca Voltan; Vitus Oberhauser; Michel Ronjat; László Csernoch; Péter Szentesi; Francesco Zorzato
In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum. Sequence comparison predicts that SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C [dehydrogenase/reductase (short-chain dehydrogenase/reductase family) member 7C] subfamily. Retinol is the substrate of SRP-35, since its transient overexpression leads to an increased production of all-trans-retinaldehyde. Transfection of C2C12 myotubes with a fusion protein encoding SRP-35-EYFP (enhanced yellow fluorescent protein) causes a decrease of the maximal Ca²⁺ released via RyR (ryanodine receptor) activation induced by KCl or 4-chloro-m-chresol. The latter result could be mimicked by the addition of retinoic acid to the C2C12 cell tissue culture medium, a treatment which caused a significant reduction of RyR1 expression. We propose that in skeletal muscle SRP-35 is involved in the generation of all-trans-retinaldehyde and may play an important role in the generation of intracellular signals linking Ca2+ release (i.e. muscle activity) to metabolism.
Journal of Biological Chemistry | 2016
Barbara Mosca; Jan Eckhardt; Leda Bergamelli; Susan Treves; Rossana Bongianino; Marco De Negri; Silvia G. Priori; Feliciano Protasi; Francesco Zorzato
We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La3+- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca2+ concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca2+ concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs.
Experimental Gerontology | 2012
Osvaldo Delbono; María Laura Messi; Zhong-Min Wang; Susan Treves; Barbara Mosca; Leda Bergamelli; Miyuki Nishi; Hiroshi Takeshima; Hang Shi; Bingzhong Xue; Francesco Zorzato
The decline in muscular strength with age is disproportionate to the loss in total muscle mass that causes it. Knocking out JP45, an integral protein of the junctional face membrane of the skeletal muscle sarcoplasmic reticulum (SR), results in decreased expression of the voltage-gated Ca(2+) channel, Ca(v)1.1; excitation-contraction uncoupling (ECU); and loss of muscle force (Delbono et al., 2007). Here, we show that Ca(v)1.1 expression, charge movement, SR Ca(2+) release, in vitro contractile force, and sustained forced running remain stable in male JP45KO mice at 12 and 18 months. They also exhibit the level of ECU reported for 3-4-month mice (Delbono et al., 2007). No further decline at later ages was recorded. Preserved ECC was not related to increased expression of any protein that directly or indirectly interacts with JP45 at the triad junction. However, maintained muscle force and physical performance were associated with ablation of JP45 expression in the brain, spontaneous and significantly diminished food intake and less tendency toward obesity when exposed to a high-fat diet compared to WT. We propose that (1) endogenously generated restriction in food intake overcomes the deleterious effects of JP45 ablation on ECC and skeletal muscle force mainly through downregulation of neuropeptide-Y expression in the hypothalamic arcuate nucleus; and (2) the JP45KO mouse constitutes an invaluable model to examine the mechanisms controlling food intake as well as skeletal muscle function with aging.
Journal of Biological Chemistry | 2016
Barbara Mosca; Jan Eckhardt; Leda Bergamelli; Susan Treves; Rossana Bongianino; Marco De Negri; Silvia G. Priori; Feliciano Protasi; Francesco Zorzato
Role of the JP45-calsequestrin complex on calcium entry in slow twitch skeletal muscles. Barbara Mosca, Jan Eckhardt, Leda Bergamelli, Susan Treves, Rossana Bongianino, Marco De Negri, Silvia G. Priori, Feliciano Protasi, and Francesco Zorzato PAGE 14558: The title of the legend to Fig. 1 should read as follows, “Force generation in EDL and soleus muscles from WT and DKO1.” THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 291, NO. 39, p. 20824, September 23, 2016
BMC Anesthesiology | 2014
Barbara Mosca; Osvaldo Delbono; María Laura Messi; Leda Bergamelli; Mirko Vukcevic; Ruben Lopez; Susan Treves; Miyuki Nishi; Hiroshi Takeshima; Francesco Zorzato
Background Skeletal muscle constitutes approximately 40% of body mass, and age-induced decrease of muscle strength impinge on daily activities and on normal social life in the elderly. Loss of muscle strength has been recognised as a debilitating and life threatening condition also in cachexia in cancer patients and in clinical conditions associated with prolonged bed rest. Skeletal muscle dihydropyridine receptors (Cav1.1) act as Ca2+ channels and voltage sensors to initiate muscle contraction by activating ryanodine receptors, the Ca2+ release channels of the sarcoplasmic reticulum. Cav1.1 activity is enhanced by a retrograde stimulatory signal delivered by the ryanodine receptor. JP45 is a membrane protein interacting with Cav1.1 and the sarcoplasmic reticulum Ca2+ storage protein calsequestrin (CASQ1). We hypothesized that JP45 and CASQ1 form a signalling pathway which modulates Cav1.1 channel activity.
Archive | 2016
Susan Nella Treves; Hans Hoppeler; Francesco Zorzato; Christoph Handschin; Serge Summermatter; Raphael Thurnheer; Gesa Santos; Barbara Mosca; Oliver Baum