Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Nozière is active.

Publication


Featured researches published by Barbara Nozière.


Journal of Physical Chemistry A | 2009

Products and Kinetics of the Liquid-Phase Reaction of Glyoxal Catalyzed by Ammonium Ions (NH4 + )

Barbara Nozière; Pawel Dziedzic

Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.


Journal of Physical Chemistry A | 2008

A Kinetic and Mechanistic Study of the Amino Acid Catalyzed Aldol Condensation of Acetaldehyde in Aqueous and Salt Solutions

Barbara Nozière

The amino acid catalyzed aldol condensation is of great interest in organic synthesis and natural environments such as atmospheric particles. However, kinetic and mechanistic information on these reactions is limited. In this work the kinetics of the aldol condensation of acetaldehyde in water and aqueous salt solutions (NaCl, CaCl2, Na2SO4, MgSO4) catalyzed by five amino acids (glycine, alanine, serine, arginine, and proline) at room temperature (295 +/- 2 K) has been studied. Monitoring the formation of three products, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal, by UV-vis absorption over 200-1100 nm revealed two distinct kinetic regimes: at low amino acid concentrations (in all cases, below 0.1 M), the overall reaction was first-order with respect to acetaldehyde and kinetically limited by the formation of the enamine intermediate. At larger amino acid concentrations (at least 0.3 M), the kinetics was second order and controlled by the C-C bond-forming step. The first-order rate constants increased linearly with amino acid concentration consistent with the enamine formation. Inorganic salts further accelerated the enamine formation according to their pKb plausibly by facilitating the iminium or enamine formation. The rate constant of the C-C bond-forming step varied with the square of amino acid concentration suggesting the involvement of two amino acid molecules. Thus, the reaction proceeded via a Mannich pathway. However, the contribution of an aldol pathway, first-order in amino acid, could not be excluded. Our results show that the rate constant for the self-condensation of acetaldehyde in aqueous atmospheric aerosols (up to 10 mM of amino acids) is identical to that in sulfuric acid 10-15 M (kI approximately 10-7-10-6 s-1) clearly illustrating the potential importance of amino acid catalysis in natural environments. This work also demonstrates that under usual laboratory conditions and in natural environments aldol condensation is likely to be kinetically controlled by the enamine formation. Notably, kinetic investigations of the C-C bond-forming addition step would only be possible with high concentrations of amino acids.


Geophysical Research Letters | 2007

Formation of secondary light-absorbing ''fulvic-like'' oligomers: A common process in aqueous and ionic atmospheric particles?

Barbara Nozière; Pawel Dziedzic

Secondary Organic Aerosols (SOA), produced by the transformation of organic gases in the atmosphere, have received a considerable amount of attention over the last three decades because of their ex ...


Nature Communications | 2014

The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation

Barbara Nozière; C. Baduel; Jean-Luc Jaffrezo

The activation of aerosol particles into cloud droplets in the Earth’s atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult’s term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now.


Environmental Science & Technology | 2014

Glyoxal Induced Atmospheric Photosensitized Chemistry Leading to Organic Aerosol Growth

Stéphanie Rossignol; Kifle Z. Aregahegn; Liselotte Tinel; Ludovic Fine; Barbara Nozière; Christian George

In recent years, it has been proposed that gas phase glyoxal could significantly contribute to ambient organic aerosol (OA) mass through multiphase chemistry. Of particular interest is the reaction between glyoxal and ammonium cations producing light-absorbing compounds such as imidazole derivatives. It was recently shown that imidazole-2-carboxaldehyde (IC) can act as a photosensitizer, initiating aerosol growth in the presence of gaseous volatile organic compounds. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (±)ESI-HRMS and UPLC/(±)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiments, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant.


Geophysical Research Letters | 2011

Atmospheric chemistry in stereo: A new look at secondary organic aerosols from isoprene

Barbara Nozière; Nélida J.D. González; Anna-Karin Borg-Karlson; Yuxin Pei; Johan Pettersson Redeby; Radovan Krejci; Josef Dommen; André S. H. Prévôt; Thorleif Anthonsen

Isoprene, a compound emitted by vegetation, could be a major contributor to secondary organic aerosols (SOA) in the atmosphere. The main evidence for this contribution were the 2-methylbutane-1,2,3 ...


Faraday Discussions | 2013

Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols

Kifle Z. Aregahegn; Barbara Nozière; Christian George

Secondary organic aerosols (SOA), which are produced by the transformations of volatile organic compounds in the atmosphere, play a central role in air quality, public health, visibility and climate, but their formation and aging remain poorly characterized. This study evidences a new mechanism for SOA formation based on photosensitized particulate-phase chemistry. Experiments were performed with a horizontal aerosol flow reactor where the diameter growth of the particles was determined as a function of various parameters. In the absence of gas-phase oxidant, experiments in which ammonium sulfate seeds containing glyoxal were exposed to gas-phase limonene and UV light exhibited a photo-induced SOA growth. Further experiments showed that this growth was due to traces of imidazole-2-carboxaldehyde (IC) in the seeds, a condensation product of glyoxal acting as an efficient photosensitizer. Over a 19 min irradiation time, 50 nm seed particles containing this compound were observed to grow between 3.5 and 30 +/- 3% in the presence of either limonene, isoprene, alpha-pinene, beta-pinene, or toluene in concentrations between 1.8 and 352 ppmv. The other condensation products of glyoxal, imidazole (IM) and 2,2-bi1H-imidazole (BI), also acted as photosensitizer but with much less efficiency under the same conditions. In the atmosphere, glyoxal and potentially other gas precursors would thus produce efficient photosensitizers in aerosol and autophotocatalyze SOA growth.


Science | 2016

Don't forget the surface

Barbara Nozière

Surface effects play a key role in cloud droplet formation [Also see Report by Ruehl et al.] Clouds are an essential source of fresh water to continents and all ecosystems (1) and a major cooling factor in the climate budget (2). Yet, predicting their formation remains a challenge (2). In the atmosphere, cloud droplets form not from water vapor alone but through condensation of water on aerosol particles called cloud condensation nuclei (CCN) (3). On page 1447 of this issue, Ruehl et al. (4) show experimentally that surface effects play a central role in cloud droplet formation from CCN.


Environmental Science & Technology | 2016

Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation

Violaine Gérard; Barbara Nozière; Christine Baduel; Ludovic Fine; Amanda A. Frossard; R. C. Cohen

Recent analyses of atmospheric aerosols from different regions have demonstrated the ubiquitous presence of strong surfactants and evidenced surface tension values, σ, below 40 mN m(-1), suspected to enhance the cloud-forming potential of these aerosols. In this work, this approach was further improved and combined with absolute concentration measurements of aerosol surfactants by colorimetric titration. This analysis was applied to PM2.5 aerosols collected at the Baltic station of Askö, Sweden, from July to October 2010. Strong surfactants were found in all the sampled aerosols, with σ = (32-40) ± 1 mN m(-1) and concentrations of at least 27 ± 6 mM or 104 ± 21 pmol m(-3). The absolute surface tension curves and critical micelle concentrations (CMC) determined for these aerosol surfactants show that (1) surfactants are concentrated enough in atmospheric particles to strongly depress the surface tension until activation, and (2) the surface tension does not follow the Szyszkowski equation during activation but is nearly constant and minimal, which provides new insights on cloud droplet activation. In addition, both the CMCs determined and the correlation (R(2) ∼ 0.7) between aerosol surfactant concentrations and chlorophyll-a seawater concentrations suggest a marine and biological origin for these compounds.


Journal of Chromatography A | 2011

New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols

Nélida J.D. González; Anna-Karin Borg-Karlson; Johan Pettersson Redeby; Barbara Nozière; Radovan Krejci; Yuxin Pei; Josef Dommen; André S. H. Prévôt

In order to facilitate the determination of the primary and secondary origin of atmospheric organic aerosols, a novel method involving chiral capillary gas chromatography coupled with mass spectrometry has been developed and validated. The method was focused on the analysis of 2-methylerythritol and 2-methylthreitol, considered to be tracers of secondary organic aerosols from the oxidation of atmospheric isoprene. The method was validated by performing various tests using authentic standards, including pure enantiomeric standards. The result showed that the analytical method itself does not affect the enantiomeric composition of the samples analyzed. The method was applied on atmospheric aerosols from a boreal forest collected in Aspvreten, Sweden and on laboratory samples obtained from liquid phase oxidation of isoprene and smog chamber experiments. Aerosol samples contained one enantiomer of 2-methylerythritol in significantly larger quantities than the others. In contrast, the liquid-phase oxidation of isoprene and its gas-phase oxidation in the smog chamber produced all enantiomers in equal quantities. The results obtained where the enantiomer fraction, EF, is larger than 0.50 suggest that 2-methyltetrols in atmospheric aerosols may also have biological origin. Information about the differences between enantiomer fractions obtained using this method brings new insights in the area of atmospheric aerosols.

Collaboration


Dive into the Barbara Nozière's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Volkamer

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge