Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Papadopoulou is active.

Publication


Featured researches published by Barbara Papadopoulou.


The EMBO Journal | 1997

Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages

Carole Dumas; Marc Ouellette; Jorge Tovar; Mark Cunningham; Alan H. Fairlamb; Samira Tamar; Martin Olivier; Barbara Papadopoulou

Parasitic protozoa belonging to the order Kinetoplastida contain trypanothione as their major thiol. Trypanothione reductase (TR), the enzyme responsible for maintaining trypanothione in its reduced form, is thought to be central to the redox defence systems of trypanosomatids. To investigate further the physiological role of TR in Leishmania, we attempted to create TR‐knockout mutants by gene disruption in L.donovani and L.major strains using the selectable markers neomycin and hygromycin phosphotransferases. TR is likely to be an important gene for parasite survival since all our attempts to obtain a TR null mutant in L.donovani failed. Instead, we obtained mutants with a partial trisomy for the TR locus where, despite the successful disruption of two TR alleles by gene targeting, a third TR copy was generated as a result of genomic rearrangements involving the translocation of a TR‐containing region to a larger chromosome. Mutants of L.donovani and L.major possessing only one wild‐type TR allele express less TR mRNA and have lower TR activity compared with wild‐type cells carrying two copies of the TR gene. Significantly, these mutants show attenuated infectivity with a markedly decreased capacity to survive intracellularly within macrophages, provided that the latter are producing reactive oxygen intermediates.


The EMBO Journal | 1992

A novel antifolate resistance gene on the amplified H circle of Leishmania

Barbara Papadopoulou; G Roy; Marc Ouellette

In several Leishmania spp., resistance to methotrexate and other drugs is often associated with amplification of the chromosomal H region in the form of extrachromosomal H circles. We report here that the H circle of Leishmania tarentolae contains an 867 bp open reading frame, ltdh, which mediates high levels of resistance to methotrexate and other antifolates, after transfection. The predicted amino acid sequence of the ltdh gene product has significant similarities to a family of short‐chain dehydrogenases, enzymes that are involved in several oxido‐reduction reactions in a wide range of organisms. To resist antifolates, Leishmania amplifies the ltdh gene as part of the H circle. We propose that LTDH might be involved in an alternative pathway for the synthesis of reduced folates and that ltdh overproduction represents a novel mechanism for resistance to antifolates. Our results support the hypothesis that the H region of the Leishmania genome contains several drug resistance genes and that preferential amplification of this region has evolved as a defense mechanism against cytotoxic drugs.


Molecular and Biochemical Parasitology | 2000

Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models.

Gaétan Roy; Carole Dumas; Denis Sereno; Ying Wu; Ajay K. Singh; Michel J. Tremblay; Marc Ouellette; Martin Olivier; Barbara Papadopoulou

We have expressed the reporter firefly luciferase gene (LUC) in Leishmania donovani and Leishmania major either as part of episomal vectors or integrated into the parasite genome under the control of their respective ribosomal promoter regions. An excellent linear correlation between parasite number and luciferase activity was observed with all the transfectants. LUC-expressing recombinant parasites were useful to monitor Leishmania spp. infections in macrophages or in animal models. For prolonged growth in absence of drug selection, such as within animal models, quantitation of parasites is more reliable when the reporter gene LUC is stably integrated in the parasite genome. These recombinant strains should be useful tools to monitor Leishmania growth under a number of conditions.


Parasitology Today | 1993

Mechanisms of drug resistance in Leishmania

Marc Ouellette; Barbara Papadopoulou

The emergence of drug resistance in protozoan parasites is a major obstacle to their control. Since vaccines are not yet in sight for several of these parasites, there is on urgent need to develop new and better drugs. These antimicrobial agents will possibly be more expensive, and will therefore impose on additional burden in health-care costs and in the planning of public health policies of the developing countries. A better understanding of drug resistance, to try to circumvent or overcome it, and the search for new specific cellular targets of parasites are warranted. The development, in vitro, of drug-resistant parasite cell lines has been instrumental in our understanding of the mechanisms of drug resistance in parasitic protozoans. Marc Ouellette and Barbara Popodopoulou here present on overview of the recent progress on the elucidation of mechanisms of drug resistance in the protozoan parasite Leishmania, selected under laboratory conditions.


Genome Biology | 2008

Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy

Jean-Michel Ubeda; Danielle Légaré; Frédéric Raymond; Amin Ahmed Ouameur; Sébastien Boisvert; Philippe Rigault; Jacques Corbeil; Michel J. Tremblay; Martin Olivier; Barbara Papadopoulou; Marc Ouellette

BackgroundDrug resistance can be complex, and several mutations responsible for it can co-exist in a resistant cell. Transcriptional profiling is ideally suited for studying complex resistance genotypes and has the potential to lead to novel discoveries. We generated full genome 70-mer oligonucleotide microarrays for all protein coding genes of the human protozoan parasites Leishmania major and Leishmania infantum. These arrays were used to monitor gene expression in methotrexate resistant parasites.ResultsLeishmania is a eukaryotic organism with minimal control at the level of transcription initiation and few genes were differentially expressed without concomitant changes in DNA copy number. One exception was found in Leishmania major, where the expression of whole chromosomes was down-regulated. The microarrays highlighted several mechanisms by which the copy number of genes involved in resistance was altered; these include gene deletion, formation of extrachromosomal circular or linear amplicons, and the presence of supernumerary chromosomes. In the case of gene deletion or gene amplification, the rearrangements have occurred at the sites of repeated (direct or inverted) sequences. These repeats appear highly conserved in both species to facilitate the amplification of key genes during environmental changes. When direct or inverted repeats are absent in the vicinity of a gene conferring a selective advantage, Leishmania will resort to supernumerary chromosomes to increase the levels of a gene product.ConclusionAneuploidy has been suggested as an important cause of drug resistance in several organisms and additional studies should reveal the potential importance of this phenomenon in drug resistance in Leishmania.


Antimicrobial Agents and Chemotherapy | 2001

DNA Transformation of Leishmania infantum Axenic Amastigotes and Their Use in Drug Screening

Denis Sereno; Gaétan Roy; Jean Loup Lemesre; Barbara Papadopoulou; Marc Ouellette

ABSTRACT Protocols for DNA electroporation in Leishmaniapromastigote cells are well established. More recently, in vitro culture of axenic Leishmania amastigotes became possible. We have established conditions for DNA transformation of axenically grown Leishmania infantum amastigotes. Parameters for DNA electroporation of Leishmania axenic amastigotes were systematically studied using luciferase-mediated transient transfection. Cell lines expressing stable luciferase activity were then selected, and their ability to be used in an in vitro drug screening procedure was determined. A model was established, using axenic amastigotes expressing luciferase activity, for rapidly determining the activity of drugs directly against both axenic and intracellular amastigotes. For intracellular amastigotes, the 50% effective concentrations of pentamidine, sodium stibogluconate (Pentostam), meglumine (Glucantime), and potassium antimonyl tartrate determined with the luciferase assay were 0.2 μM (0.12 μg/ml), 55 μg/ml, 95 μg/ml, and 0.12 μg/ml, respectively; these values are in agreement with values determined by more labor-intensive staining methods. We also showed the usefulness of luciferase-expressing parasites for analyzing drug resistance. The availability of luciferase-expressing amastigotes for use in high-throughput screening should facilitate the search for new antileishmanial drugs.


Molecular and Biochemical Parasitology | 1994

High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system.

Saibal Dey; Barbara Papadopoulou; Anass Haimeur; Gaétan Roy; Katherine Grondin; Dexian Dou; Barry P. Rosen; Marc Ouellette

Leishmania tarentolae cells selected for resistance to the oxyanions pentavalent or trivalent antimonials or to trivalent arsenicals exhibited cross-resistance to the other oxyanions. The basis for resistance in these mutants was studied by transport experiments using radioactive arsenite. All mutants exhibiting high level resistance to arsenite showed a marked decrease in the steady-state accumulation of arsenite. Decreased accumulation was also observed in antimonials-resistant mutants cross-resistant to various concentrations of arsenite. Cells depleted of endogenous energy reserves with metabolic inhibitors were loaded with radioactive arsenite; following addition of glucose, rapid efflux of arsenite was observed from arsenite mutant cells. Mutants resistant to high levels of arsenicals exhibited amplification of the P-glycoprotein related gene ltpgpA or of a linear amplicon of unknown function. However, the efflux-mediated arsenite resistance did not correlate with the amplification of the ltpgpA gene or with the presence of the linear amplicon. The calcium channel blocker verapamil and arsenite act in synergy in cells exhibiting the efflux system. Overall the oxyanion efflux system in Leishmania shares several properties with other resistance efflux systems mediated by transporters.


Infection and Immunity | 2005

Live Nonpathogenic Parasitic Vector as a Candidate Vaccine against Visceral Leishmaniasis

Marie Breton; Michel J. Tremblay; Marc Ouellette; Barbara Papadopoulou

ABSTRACT To date, there are no proven vaccines against any form of leishmaniasis. The development of live attenuated vectors shows promise in the field of Leishmania vaccination because these organisms mimic more effectively the course of real infections and can elicit potent activation of the immune system. In the present study, we investigated the potential of a parasitic protozoan that is nonpathogenic to humans, Leishmania tarentolae, as a live candidate vaccine that efficiently targets dendritic cells and lymphoid organs, thus enhancing antigen presentation and consequently influencing the magnitude and quality of T-cell immune responses. We demonstrated that L. tarentolae activates the dendritic cell maturation process and induces T-cell proliferation and the production of gamma interferon, thus skewing CD4+ T cells toward a Th1 cell phenotype. More importantly, we found that a single intraperitoneal injection of L. tarentolae could elicit a protective immune response against infectious challenge with Leishmania donovani in susceptible BALB/c mice. These results suggest that the use of L. tarentolae as a live vaccine vector may represent a promising approach for improving the effectiveness and safety of candidate live vaccines against Leishmania infections and possibly other intracellular pathogens for which T-cell mediated responses are critical for the development of protective immunity.


Antimicrobial Agents and Chemotherapy | 2005

Role of the ABC Transporter MRPA (PGPA) in Antimony Resistance in Leishmania infantum Axenic and Intracellular Amastigotes

Karima El Fadili; Nadine Messier; Philippe Leprohon; Gaétan Roy; Chantal Guimond; Nathalie Trudel; Nancy G. Saravia; Barbara Papadopoulou; Danielle Légaré; Marc Ouellette

ABSTRACT Antimonial compounds are the mainstay for the treatment of infections with the protozoan parasite Leishmania. We present our studies on Leishmania infantum amastigote parasites selected for resistance to potassium antimonyl tartrate [Sb(III)]. Inside macrophages, the Sb(III)-selected cells are cross-resistant to sodium stibogluconate (Pentostam), the main drug used against Leishmania. Putative alterations in the level of expression of more than 40 genes were compared between susceptible and resistant axenic amastigotes using customized DNA microarrays. The expression of three genes coding for the ABC transporter MRPA (PGPA), S-adenosylhomocysteine hydrolase, and folylpolyglutamate synthase was found to be consistently increased. The levels of cysteine were found to be increased in the mutant. Transfection of the MRPA gene was shown to confer sodium stibogluconate resistance in intracellular parasites. This MRPA-mediated resistance could be reverted by using the glutathione biosynthesis-specific inhibitor buthionine sulfoximine. These results highlight for the first time the role of MRPA in antimony resistance in the amastigote stage of the parasite and suggest a strategy for reversing resistance.


The EMBO Journal | 1999

Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae.

Christoph Kündig; Anass Haimeur; Danielle Légaré; Barbara Papadopoulou; Marc Ouellette

Functional cloning led to the isolation of a novel methotrexate (MTX) resistance gene in the protozoan parasite Leishmania. The gene corresponds to orfG, an open reading frame (ORF) of the LD1/CD1 genomic locus that is frequently amplified in several Leishmania stocks. A functional ORF G–green fluorescence protein fusion was localized to the plasma membrane. Transport studies indicated that ORF G is a high affinity biopterin transporter. ORF G also transports folic acid, with a lower affinity, but does not transport the drug analog MTX. Disruption of both alleles of orfG led to a mutant strain that became hypersensitive to MTX and had no measurable biopterin transport. Leishmania tarentolae MTX‐resistant cells without their high affinity folate transporters have a rearranged orfG gene and increased orfG RNA levels. Overexpression of orfG leads to increased biopterin uptake and, in folate‐rich medium, to increased folate uptake. MTX‐resistant cells compensate for mutations in their high affinity folate/MTX transporter by overexpressing ORF G, which increases the uptake of pterins and selectively increases the uptake of folic acid, but not MTX.

Collaboration


Dive into the Barbara Papadopoulou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Olivier

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge