Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Plecko is active.

Publication


Featured researches published by Barbara Plecko.


Nature Medicine | 2006

Mutations in antiquitin in individuals with pyridoxine-dependent seizures

Philippa B. Mills; Eduard A. Struys; Cornelis Jakobs; Barbara Plecko; Peter Baxter; Matthias R. Baumgartner; M.A.A.P. Willemsen; Heymut Omran; Uta Tacke; Birgit Uhlenberg; Bernhard Weschke; Peter Clayton

We show here that children with pyridoxine-dependent seizures (PDS) have mutations in the ALDH7A1 gene, which encodes antiquitin; these mutations abolish the activity of antiquitin as a Δ1-piperideine-6-carboxylate (P6C)–α-aminoadipic semialdehyde (α-AASA) dehydrogenase. The accumulating P6C inactivates pyridoxal 5′-phosphate (PLP) by forming a Knoevenagel condensation product. Measurement of urinary α-AASA provides a simple way of confirming the diagnosis of PDS and ALDH7A1 gene analysis provides a means for prenatal diagnosis.


Molecular Genetics and Metabolism | 2008

Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: Final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase

Paul Harmatz; Roberto Giugliani; Ida Vanessa Doederlein Schwartz; Nathalie Guffon; Elisa Leão Teles; M. Clara Sá Miranda; J. Edmond Wraith; Michael Beck; Laila Arash; Maurizio Scarpa; David Ketteridge; John J. Hopwood; Barbara Plecko; Robert D. Steiner; Chester B. Whitley; Zi-Fan Yu; Stuart J. Swiedler; Celeste Decker

UNLABELLED The objective of this study was to evaluate the long-term clinical benefits and safety of recombinant human arylsulfatase B (rhASB) treatment of mucopolysaccharidosis type VI (MPS VI: Maroteaux-Lamy syndrome), a lysosomal storage disease. Fifty-six patients derived from 3 clinical studies were followed in open-label extension studies for a total period of 97-260 Weeks. All patients received weekly infusions of rhASB at 1 mg/kg. Efficacy was evaluated by (1) distance walked in a 12-minute walk test (12MWT) or 6-minute walk test (6MWT), (2) stairs climbed in the 3-minute stair climb (3MSC), and (3) reduction in urinary glycosaminoglycans (GAG). Safety was evaluated by compliance, adverse event (AE) reporting and adherence to treatment. RESULTS A significant reduction in urinary GAG (71-79%) was sustained. For the 12MWT, subjects in Phase 2 showed improvement of 255+/-191 m (mean+/-SD) at Week 144; those in Phase 3 Extension demonstrated improvement from study baseline of 183+/-26 m (mean+/- SE) in the rhASB/rhASB group at Week 96 and from treatment baseline (Week 24) of 117+/-25 m in the placebo/rhASB group. The Phase 1/2 6MWT and the 3MSC from Phase 2 and 3 also showed sustained improvements through the final study measurements. Compliance was 98% overall. Only 560 of 4121 reported AEs (14%) were related to treatment with only 10 of 560 (2%) described as severe. CONCLUSION rhASB treatment up to 5 years results in sustained improvements in endurance and has an acceptable safety profile.


Journal of Medical Genetics | 2012

Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing

Tobias B. Haack; Birgit Haberberger; Eva-Maria Frisch; Thomas Wieland; Arcangela Iuso; Matteo Gorza; Valentina Strecker; Elisabeth Graf; Johannes A. Mayr; U. Herberg; Julia B. Hennermann; Thomas Klopstock; Klaus A. Kuhn; Uwe Ahting; Wolfgang Sperl; Ekkehard Wilichowski; Georg F. Hoffmann; Marketa Tesarova; Hana Hansikova; Jiri Zeman; Barbara Plecko; Massimo Zeviani; Ilka Wittig; Tim M. Strom; Markus Schuelke; Peter Freisinger; Thomas Meitinger; Holger Prokisch

Background Next generation sequencing has become the core technology for gene discovery in rare inherited disorders. However, the interpretation of the numerous sequence variants identified remains challenging. We assessed the application of exome sequencing for diagnostics in complex I deficiency, a disease with vast genetic heterogeneity. Methods Ten unrelated individuals with complex I deficiency were selected for exome sequencing and sequential bioinformatic filtering. Cellular rescue experiments were performed to verify pathogenicity of novel disease alleles. Results The first filter criterion was ‘Presence of known pathogenic complex I deficiency variants’. This revealed homozygous mutations in NDUFS3 and ACAD9 in two individuals. A second criterion was ‘Presence of two novel potentially pathogenic variants in a structural gene of complex I’, which discovered rare variants in NDUFS8 in two unrelated individuals and in NDUFB3 in a third. Expression of wild-type cDNA in mutant cell lines rescued complex I activity and assembly, thus providing a functional validation of their pathogenicity. Using the third criterion ‘Presence of two potentially pathogenic variants in a gene encoding a mitochondrial protein’, loss-of-function mutations in MTFMT were discovered in two patients. In three patients the molecular genetic correlate remained unclear and follow-up analysis is ongoing. Conclusion Appropriate in silico filtering of exome sequencing data, coupled with functional validation of new disease alleles, is effective in rapidly identifying disease-causative variants in known and new complex I associated disease genes.


Journal of Inherited Metabolic Disease | 2009

Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop

Ute Spiekerkoetter; Martin Lindner; René Santer; M. Grotzke; Matthias R. Baumgartner; H. Boehles; A. Das; C. Haase; Julia B. Hennermann; D. Karall; H. de Klerk; I. Knerr; H. G. Koch; Barbara Plecko; W. Röschinger; K. O. Schwab; D. Scheible; Frits A. Wijburg; J. Zschocke; Ertan Mayatepek; U. Wendel

SummaryPublished data on treatment of fatty acid oxidation defects are scarce. Treatment recommendations have been developed on the basis of observations in 75 patients with long-chain fatty acid oxidation defects from 18 metabolic centres in Central Europe. Recommendations are based on expert practice and are suggested to be the basis for further multicentre prospective studies and the development of approved treatment guidelines. Considering that disease complications and prognosis differ between different disorders of long-chain fatty acid oxidation and also depend on the severity of the underlying enzyme deficiency, treatment recommendations have to be disease-specific and depend on individual disease severity. Disorders of the mitochondrial trifunctional protein are associated with the most severe clinical picture and require a strict fat-reduced and fat-modified (medium-chain triglyceride-supplemented) diet. Many patients still suffer acute life-threatening events or long-term neuropathic symptoms despite adequate treatment, and newborn screening has not significantly changed the prognosis for these severe phenotypes. Very long-chain acyl-CoA dehydrogenase deficiency recognized in neonatal screening, in contrast, frequently has a less severe disease course and dietary restrictions in many patients may be loosened. On the basis of the collected data, recommendations are given with regard to the fat and carbohydrate content of the diet, the maximal length of fasting periods and the use of l-carnitine in long-chain fatty acid oxidation defects.


Journal of Inherited Metabolic Disease | 2009

Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop

Ute Spiekerkoetter; Martin Lindner; René Santer; M. Grotzke; Matthias R. Baumgartner; H. Boehles; A. Das; C. Haase; Julia B. Hennermann; D. Karall; H. de Klerk; I. Knerr; H. G. Koch; Barbara Plecko; W. Röschinger; K. O. Schwab; D. Scheible; Frits A. Wijburg; J. Zschocke; Ertan Mayatepek; U. Wendel

SummaryAt present, long-chain fatty acid oxidation (FAO) defects are diagnosed in a number of countries by newborn screening using tandem mass spectrometry. In the majority of cases, affected newborns are asymptomatic at time of diagnosis and acute clinical presentations can be avoided by early preventive measures. Because evidence-based studies on management of long-chain FAO defects are lacking, we carried out a retrospective analysis of 75 patients from 18 metabolic centres in Germany, Switzerland, Austria and the Netherlands with special regard to treatment and disease outcome. Dietary treatment is effective in many patients and can prevent acute metabolic derangements and prevent or reverse severe long-term complications such as cardiomyopathy. However, 38% of patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency had intermittent muscle weakness and pain despite adhering to therapy. Seventy-six per cent of patients with disorders of the mitochondrial trifunctional protein (TFP)-complex including long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, had long-term myopathic symptoms. Of these, 21% had irreversible peripheral neuropathy and 43% had retinopathy. The main principle of treatment was a fat-reduced and fat-modified diet. Fat restriction differed among patients with different enzyme defects and was strictest in disorders of the TFP-complex. Patients with a medium-chain fat-based diet received supplementation of essential long-chain fatty acids. l-Carnitine was supplemented in about half of the patients, but in none of the patients with VLCAD deficiency identified by newborn screening. In summary, in this cohort the treatment regimen was adapted to the severity of the underlying enzyme defect and thus differed among the group of long-chain FAO defects.


Brain | 2014

Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome

Philippa B. Mills; Stephane Camuzeaux; Emma Footitt; Kevin Mills; Paul Gissen; Laura Fisher; Krishna B. Das; Sophia Varadkar; Sameer M. Zuberi; Robert McWilliam; Tommy Stödberg; Barbara Plecko; Matthias R. Baumgartner; Oliver Maier; Sophie Calvert; Kate Riney; Nicole I. Wolf; John H. Livingston; Pronab Bala; Chantal Morel; François Feillet; Francesco Raimondi; Ennio Del Giudice; W. Kling Chong; Matthew Pitt; Peter Clayton

Mutations in PNPO are a known cause of neonatal onset seizures that are resistant to pyridoxine but responsive to pyridoxal phosphate (PLP). Mills et al. show that PNPO mutations can also cause neonatal onset seizures that respond to pyridoxine but worsen with PLP, as well as PLP-responsive infantile spasms.


Annals of Neurology | 2000

Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy

Barbara Plecko; Sylvia Stockler-Ipsiroglu; Eduard Paschke; Wolfgang Erwa; Eduard A. Struys; Cornelis Jakobs

Diagnosis of pyridoxine‐dependent epilepsy is based on the clinical response to high‐dosage application of pyridoxine. Here, we report on 2 patients with pyridoxine‐dependent epilepsy with significant elevation of pipecolic acid concentrations in plasma and cerebrospinal fluid (CSF) and further increase of pipecolic acid in CSF during a 72‐hour pyridoxine withdrawal in 1 of them. Patients with non–pyridoxine‐dependent epilepsy had normal pipecolic acid concentrations in plasma and significantly lower concentrations in CSF. High plasma and CSF pipecolic acid concentrations might provide a diagnostic marker in pyridoxine‐dependent epilepsy. Ann Neurol 2000;48:121–125


Molecular Genetics and Metabolism | 2012

Lysine restricted diet for pyridoxine-dependent epilepsy: First evidence and future trials

Clara van Karnebeek; Hans Hartmann; Sravan Jaggumantri; Levinus A. Bok; Barb Cheng; Mary B. Connolly; Curtis R. Coughlin; Anibh M. Das; Sidney M. Gospe; Cornelis Jakobs; Johanna H. van der Lee; Saadet Mercimek-Mahmutoglu; U. Meyer; Eduard A. Struys; Graham Sinclair; Johan L.K. Van Hove; Jean Paul Collet; Barbara Plecko; Sylvia Stockler

OBJECTIVE To evaluate the efficacy and safety of dietary lysine restriction as an adjunct to pyridoxine therapy on biochemical parameters, seizure control, and developmental/cognitive outcomes in children with pyridoxine-dependent epilepsy (PDE) caused by antiquitin (ATQ) deficiency. METHODS In this observational study, seven children with confirmed ATQ deficiency were started on dietary lysine restriction with regular nutritional monitoring. Biochemical outcomes were evaluated using pipecolic acid and α-aminoadipic semialdehyde (AASA) levels in body fluids; developmental/cognitive outcomes were evaluated using age-appropriate tests and parental observations. RESULTS Lysine restriction was well tolerated with good compliance; no adverse events were reported. Reduction in biomarker levels (measurement of the last value before and first value after initiation of dietary lysine restriction) ranged from 20 to 67% for plasma pipecolic acid, 13 to 72% for urinary AASA, 45% for plasma AASA and 42% for plasma P6C. For the 1 patient in whom data were available and who showed clinical deterioration upon interruption of diet, cerebrospinal fluid levels decreased by 87.2% for pipecolic acid and 81.7% for AASA. Improvement in age-appropriate skills was observed in 4 out of 5 patients showing pre-diet delays, and seizure control was maintained or improved in 6 out 7 children. CONCLUSIONS This observational study provides Level 4 evidence that lysine restriction is well tolerated with significant decrease of potentially neurotoxic biomarkers in different body compartments, and with the potential to improve developmental outcomes in children with PDE caused by ATQ deficiency. To generate a strong level of evidence before this potentially burdensome dietary therapy becomes the mainstay treatment, we have established: an international PDE consortium to conduct future studies with an all-inclusive integrated study design; a website containing up-to-date information on PDE; a methodological toolbox; and an online registry to facilitate the participation of interested physicians, scientists, and families in PDE research.


Neurology | 2014

Pyridoxine responsiveness in novel mutations of the PNPO gene

Barbara Plecko; Karl Paul; Philippa B. Mills; Peter Clayton; Eduard Paschke; Oliver Maier; Oswald Hasselmann; Gudrun Schmiedel; Simone Kanz; Mary B. Connolly; Nicole I. Wolf; Eduard A. Struys; Sylvia Stockler; Lucia Abela; Doris Hofer

Objective: To determine whether patients with pyridoxine-responsive seizures but normal biomarkers for antiquitin deficiency and normal sequencing of the ALDH7A1 gene may have PNPO mutations. Methods: We sequenced the PNPO gene in 31 patients who fulfilled the above-mentioned criteria. Results: We were able to identify 11 patients carrying 3 novel mutations of the PNPO gene. In 6 families, a homozygous missense mutation p.Arg225His in exon 7 was identified, while 1 family was compound heterozygous for a novel missense mutation p.Arg141Cys in exon 5 and a deletion c.279_290del in exon 3. Pathogenicity of the respective mutations was proven by absence in 100 control alleles and expression studies in CHO-K1 cell lines. The response to pyridoxine was prompt in 4, delayed in 2, on EEG only in 2, and initially absent in another 2 patients. Two unrelated patients homozygous for the p.Arg225His mutation experienced status epilepticus when switched to pyridoxal 5′-phosphate (PLP). Conclusions: This study challenges the paradigm of exclusive PLP responsiveness in patients with pyridoxal 5′-phosphate oxidase deficiency and underlines the importance of consecutive testing of pyridoxine and PLP in neonates with antiepileptic drug–resistant seizures. Patients with pyridoxine response but normal biomarkers for antiquitin deficiency should undergo PNPO mutation analysis.


Journal of Medical Genetics | 2014

The clinical significance of small copy number variants in neurodevelopmental disorders

Reza Asadollahi; Beatrice Oneda; Pascal Joset; Silvia Azzarello-Burri; Deborah Bartholdi; Katharina Steindl; Marie-Françoise Vincent; Joana Cobilanschi; Heinrich Sticht; Rosa Baldinger; Regina Reissmann; Irene Sudholt; Christian Thiel; Arif B. Ekici; André Reis; Emilia K. Bijlsma; Joris Andrieux; Anne Dieux; David Fitzpatrick; Susanne Ritter; Alessandra Baumer; Beatrice Latal; Barbara Plecko; Oskar G. Jenni; Anita Rauch

Background Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500 kb has not been well elucidated in a clinical context. Methods By high-resolution chromosomal microarray analysis, we investigated the clinical significance of all rare non-polymorphic exonic CNVs sizing 1–500 kb in a cohort of 714 patients with undiagnosed NDDs. Results We detected 96 rare CNVs <500 kb affecting coding regions, of which 58 (60.4%) were confirmed. 6 of 14 confirmed de novo, one of two homozygous and four heterozygous inherited CNVs affected the known microdeletion regions 17q21.31, 16p11.2 and 2p21 or OMIM morbid genes (CASK, CREBBP, PAFAH1B1, SATB2; AUTS2, NRXN3, GRM8). Two further de novo CNVs affecting single genes (MED13L, CTNND2) were instrumental in delineating novel recurrent conditions. For the first time, we here report exonic deletions of CTNND2 causing low normal IQ with learning difficulties with or without autism spectrum disorder. Additionally, we discovered a homozygous out-of-frame deletion of ACOT7 associated with features comparable to the published mouse model. In total, 24.1% of the confirmed small CNVs were categorised as pathogenic or likely pathogenic (median size 130 kb), 17.2% as likely benign, 3.4% represented incidental findings and 55.2% remained unclear. Conclusions These results verify the diagnostic relevance of genome-wide rare CNVs <500 kb, which were found pathogenic in ∼2% (14/714) of cases (1.1% de novo, 0.3% homozygous, 0.6% inherited) and highlight their inherent potential for discovery of new conditions.

Collaboration


Dive into the Barbara Plecko's collaboration.

Top Co-Authors

Avatar

Bernhard Schmitt

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Abela

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Sperl

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Déborah Mathis

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduard A. Struys

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M. Crowther

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge