Barbara Przybylska-Gornowicz
University of Warmia and Mazury in Olsztyn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Przybylska-Gornowicz.
BioMed Research International | 2014
Grzegorz Redlarski; A. Żak; Natalia Ziółkowska; Barbara Przybylska-Gornowicz; Marek Krawczuk
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.
Experimental and Toxicologic Pathology | 2016
Barbara Przybylska-Gornowicz; Magdalena Gajęcka; Krystyna Targońska; Natalia Ziółkowska; Magdalena Prusik; Maciej Gajęcki
Deoxynivalenol (DON) and zearalenone (ZEN), produced by microfungi of the Fusarium family, are among the most commonly occurring mycotoxins. They are considered important factors affecting human and animal health as well as livestock productivity. The aim of this study was to determine the effect of low doses of these mycotoxins on the histological structure of the pig duodenum. The study was performed on 72 gilts, with initial weights of approximately 25kg, divided into 4 equal groups. Group I received per os ZEN (40μg/kg BW), group II-DON (12μg/kg BW), group III-ZEN (40μg/kg BW) and DON (12μg/kg BW), and group IV-vehicle. The pigs were killed after 1, 2, 3, 4, 5 and 6 weeks of the treatment, and the duodenum samples were prepared for histological investigations. The slides were digitalized and subjected to morphometrical analysis. The treatment with DON and ZEN did not change the architecture of the mucosa or the ratio between goblet and adsorptive cells in the epithelium. The administration of DON induced an increase in the number of lymphocytes in the mucosal epithelium. Both mycotoxins, administered alone or together, increased the quantity of lymphocytes, plasma cells and macrophages with black-brown granules in the lamina propria. The time-courses of changes in the number of defense system cells evoked by DON and ZEN were different. In conclusion, dietary exposure to low doses of Fusarium mycotoxins should be considered an important risk factor for subclinical inflammation in the small intestine.
Toxins | 2015
Barbara Przybylska-Gornowicz; Michał Tarasiuk; Magdalena Prusik; Natalia Ziółkowska; Łukasz Zielonka; Maciej Gajęcki; Magdalena Gajęcka
Immature gilts were administered per os with zearalenone (ZEN) at 40 μg/kg BW (group Z, n = 9), deoxynivalenol (DON) at 12 μg/kg BW (group D, n = 9), a mixture of ZEN and DON (group M, n = 9) or a placebo (group C, n = 9) over a period of six weeks. The pigs were sacrificed after one, three, or six weeks of the treatment (12 pigs per each time-point). Histological investigations revealed an increase in the mucosal thickness and the crypt depth as well as a decrease in the ratio of the villus height to the crypt depth in groups D and M after six weeks of exposure to the mycotoxins. The number of goblet cells in the villus epithelium was elevated in groups Z and M after one week and in group D after three weeks. The administration of ZEN increased the lymphocyte number in the villus epithelium after 1 week and the plasma cell quantity in the lamina propria after one, three, and six weeks of the experiment. DON treatment resulted in an increase in the lymphocyte number in the villus epithelium and the lamina propria after six weeks, and in the plasma cell quantity in the lamina propria after one, three, and six weeks of exposure. In group M, lymphocyte counts in the epithelium and the lamina propria increased significantly after six weeks. Neither mycotoxin induced significant adverse changes in the ultrastructure of the mucosal epithelium and the lamina propria or in the intestinal barrier permeability. Our results indicate that immune cells are the principal target of low doses of ZEN and DON.
International Journal of Molecular Sciences | 2014
Natalia Ziółkowska; Magdalena Prusik; Barbara Przybylska-Gornowicz
This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2000
Barbara Przybylska-Gornowicz; Lone Helboe; Morten Møller
An immunohistochemical study of the pineal gland of the domestic pig was carried out using rabbit antisera raised against synthetic peptide fragments corresponding to different amino acid sequences of the prosomatostatin, the somatostatin‐14, and the somatostatin‐28 molecule. The study was supplemented by immunohistochemical staining with rabbit antisera raised against five subtypes of somatostatin receptors. The pineal glands were taken from the newborn, 21‐day‐old and 7‐month‐old pigs. Immunoreactive nerve fibers and cells were observed in the pineal gland with all the antisera against somatostatin and prosomatostatin. The nerve fibers were located throughout the pineal gland—in the capsule, connective septa, and parenchyma—with the highest density in proximo‐ventral part of the gland. The somatostatin positive fibers were also found in the habenular and posterior commissurae areas. Somatostatin‐immunoreactive cell bodies were observed mostly in the central part of the gland. These results point to the existence of two somatostatin sources in the pig pineal gland: 1) nerve fibers, probably of central origin; and 2) cells that may represent intrapineal neurons or specialised pinealocytes. A clear difference in the immunoreactivity between newborn, 21‐day‐old, and 7‐month‐old pigs was found. Generally, the density of nerve fibers was lower in adult than young animals. The number of the cells also decreased with age. By using the antisera against the five somatostatin receptors, only sst3 ‐ receptor immunoreactivity could be detected. The receptor‐immunoreactivity was confined to varicose and smooth fibers and some cells. The sst3‐receptor positive structures were localised in all parts of the gland and their number was higher in younger pigs. Anat Rec 259:141–149, 2000.
PLOS ONE | 2014
Natalia Ziółkowska; Wojciech Petryński; Katarzyna Palkowska; Magdalena Prusik; Krystyna Targońska; Zygmunt Giżejewski; Barbara Przybylska-Gornowicz
Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus.
BioMed Research International | 2014
Natalia Ziółkowska; Magdalena Prusik; Barbara Przybylska-Gornowicz
The ovine pineal is generally considered as an interesting model for the study on adrenergic regulation of melatonin secretion due to some functional similarities with this gland in the human. The present investigations, performed in the superfusion culture of pineal explants, demonstrated that the norepinephrine-induced elevation of melatonin secretion in ovine pinealocytes comprised of two subsequent periods: a rapid increase phase and a slow increase phase. The first one included the quick rise in release of N-acetylserotonin and melatonin, occurring parallel to elevation of NE concentration in the medium surrounding explants. This rapid increase phase was not affected by inhibition of translation. The second, slow increase phase began after NE level had reached the maximum concentration in the culture medium and lasted about two hours. It was completely abolished by the treatment with translation inhibitors. The obtained results showed for the first time that the regulation of N-acetylserotonin synthesis in pinealocytes of some species like the sheep involves the on/off mechanism, which is completely independent of protein synthesis and works very fast. They provided strong evidence pointing to the need of revision of the current opinion that arylalkylamines N-acetyltransferase activity in pinealocytes is controlled exclusively by changes in enzyme abundance.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012
Barbara Przybylska-Gornowicz; Magdalena Prusik; Miroslaw Kalicki; Natalia Ziółkowska
The avian pineal is a directly photosensory organ taking part in the organization of the circadian and seasonal rhythms. It plays an important role in regulation of many behavior and physiological phenomena including migration. The aim of the study was to investigate morphology of the pineal organ in the common gull (Larus canus). The light and electron microscopic studies were performed on the pineals of juvenile birds living in natural conditions of the Baltic Sea coast, which have been untreatably injured during strong storms in autumn and qualified for euthanasia. The investigated pineals consisted of a wide, triangular, superficially localized distal part and a narrow, elongated proximal part, attached via the choroid plexus to the intercommissural region of the diencephalon. The accessory pineal tissue was localized caudally to the choroid plexus. Based on the histological criteria, the organ was classified as the solid‐follicular type. Two types of cells of fotoreceptory line were distinguished: rudimentary–receptor pinealocytes and secretory pinealocytes. Both types of cells were characterized by unusual features, which have been not previously described in avian pinealocytes: the presence of paracrystalline structures in the basal processes and their endings, the storage of glycogen in the form of large accumulations and the arrangement of mitochondria in clusters. Further studies on other species of wild water birds dwelling in condition of cold seas are necessary to explain if the described features of pinealocytes are specific for genus Larus, family Laridae or a larger group of water birds living in similar environmental conditions. Anat Rec, 2012.
Toxins | 2018
Barbara Przybylska-Gornowicz; Magdalena Prusik; Maria Hanuszewska; Marcela Petrusewicz-Kosińska; Magdalena Gajęcka; Łukasz Zielonka; Maciej Gajęcki
The contamination of feed with mycotoxins results in reduced growth, feed refusal, immunosuppression, and health problems. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important mycotoxins. The aim of the study was to examine the effects of low doses of these mycotoxins on the histological structure and ultrastructure of the large intestine in the pig. The study was performed on 36 immature gilts of mixed breed (White Polish Big × Polish White Earhanging), which were divided into four groups administrated per os with ZEN at 40 µg/kg BW, DON at 12 µg/kg BW, a mixture of ZEN (40 µg/kg BW) and DON (12 µg/kg BW) or a placebo. The pigs were killed by intravenous overdose of pentobarbital after one, three, and six weeks of treatment. The cecum, ascending and descending colon samples were prepared for light and electron microscopy. Administration of toxins did not influence the architecture of the mucosa and submucosa in the large intestine. ZEN and ZEN + DON significantly decreased the number of goblet cells in the cecum and descending colon. The mycotoxins changed the number of lymphocytes and plasma cells in the large intestine, which usually increased in number. However, this effect differed between the intestine segments and toxins. Mycotoxins induced some changes in the ultrastructure of the mucosal epithelium. They did not affect the expression of proliferative cell nuclear antigen and the intestinal barrier permeability. The obtained results indicate that mycotoxins especially ZEN may influence the defense mechanisms of the large intestine.
Micron | 2017
Barbara Przybylska-Gornowicz; Natalia Ziółkowska; Magdalena Prusik
Two structures, considered as secretory in nature, are present in the pinealocytes in of the domestic pig show the presence of two structures, which are considered as secretory in nature - the dense core vesicles (DCV) and the membrane bounded (dense) bodies (MBB). The latter are extremely numerous in pig pinealocytes (they occupy 6-20% of the cytoplasm), and the number of MBB changes under different physiological and experimental conditions. Norepinephrine is the main neurotransmitter that regulates the secretion of pineal melatonin. The present study was carried out to 1) clarify whether the DCV and their source - the Golgi apparatus (GA) - as well as the MBB are controlled by norepinephrine, 2) determine the effect of adrenergic stimulation on these structures, and 3) identify the receptors involved in the regulation of these structures. The studies were performed using a static organ culture of pig pineal explants. The explants were incubated in a control medium between 08:00 and 20:00 and in a medium with 10μM norepinephrine or alpha- or beta-adrenoceptor agonists between 20:00 and 08:00 on five consecutive days. The tissues were subsequently prepared for ultrastructural analysis. The results distinctly showed that the DCV, GA and MBB in pig pinealocytes are under adrenergic control. The stimulation of the beta-adrenoceptors resulted in an increase in the numerical density of the DCV and a decrease in the relative volume of the GA in the perikarya, while the incubation with agonists of the alpha1-adrenoceptors was ineffective. The relative volume of the MBB in the perikarya significantly decreased after treatment with both beta-agonists and alpha1-agonists, which suggested the involvement of two types of adrenoceptors in the regulation of these structures.