Barbara Reinhold-Hurek
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Reinhold-Hurek.
Trends in Microbiology | 1998
Barbara Reinhold-Hurek; Thomas Hurek
N2-fixing bacteria such as Azoarcus spp., Herbaspirillum spp, and Acetobacter diazotrophicus can infect the interior of gramineous plants without causing symptoms of plant disease but do not survive in soil. Like phytopathogens, they can penetrate into central tissues and spread systemically. There is no evidence for an endosymbiosis in living plant cells; however, the bacteria are physiologically active in the plant apoplast.
Current Opinion in Plant Biology | 2011
Barbara Reinhold-Hurek; Thomas Hurek
As current research activities have focused on symbiotic or parasitic plant-microbe interactions, other types of associations between plants and microorganisms are often overlooked. Endophytic bacteria colonize inner host tissues, sometimes in high numbers, without damaging the host or eliciting strong defense responses. Unlike endosymbionts they are not residing in living plant cells or surrounded by a membrane compartment. The molecular basis of endophytic interactions is still not well understood. Several traits involved in the establishment of endophytes have been elucidated. Culture-independent methods for community analysis and functional genomic as well as comparative genomic analyses will provide a better understanding of community dynamics, signaling, and functions in endophyte-plant associations.
Environmental Microbiology | 2012
Michael Pester; Thomas Rattei; Stefan Flechl; Alexander Gröngröft; Andreas Richter; Jörg Overmann; Barbara Reinhold-Hurek; Alexander Loy; Michael Wagner
Ammonia-oxidizing archaea (AOA) play an important role in nitrification and many studies exploit their amoA genes as marker for their diversity and abundance. We present an archaeal amoA consensus phylogeny based on all publicly available sequences (status June 2010) and provide evidence for the diversification of AOA into four previously recognized clusters and one newly identified major cluster. These clusters, for which we suggest a new nomenclature, harboured 83 AOA species-level OTU (using an inferred species threshold of 85% amoA identity). 454 pyrosequencing of amoA amplicons from 16 soils sampled in Austria, Costa Rica, Greenland and Namibia revealed that only 2% of retrieved sequences had no database representative on the species-level and represented 30–37 additional species-level OTUs. With the exception of an acidic soil from which mostly amoA amplicons of the Nitrosotalea cluster were retrieved, all soils were dominated by amoA amplicons from the Nitrososphaera cluster (also called group I.1b), indicating that the previously reported AOA from the Nitrosopumilus cluster (also called group I.1a) are absent or represent minor populations in soils. AOA richness estimates on the species level ranged from 8–83 co-existing AOAs per soil. Presence/absence of amoA OTUs (97% identity level) correlated with geographic location, indicating that besides contemporary environmental conditions also dispersal limitation across different continents and/or historical environmental conditions might influence AOA biogeography in soils.
Molecular Plant-microbe Interactions | 2012
Angela Sessitsch; Pablo R. Hardoim; J. Döring; Alexandra Weilharter; Andrea Krause; T. Woyke; Birgit Mitter; Lena Hauberg-Lotte; F. Friedrich; M. Rahalkar; Thomas Hurek; Abhijit Sarkar; Levente Bodrossy; L.S. van Overbeek; D. Brar; J. D. van Elsas; Barbara Reinhold-Hurek
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Journal of Bacteriology | 2001
Prasad Gyaneshwar; Euan K. James; Natarajan Mathan; Pallavolu M. Reddy; Barbara Reinhold-Hurek; J. K. Ladha
Six closely related N2-fixing bacterial strains were isolated from surface-sterilized roots and stems of four different rice varieties. The strains were identified as Serratia marcescens by 16S rRNA gene analysis. One strain, IRBG500, chosen for further analysis showed acetylene reduction activity (ARA) only when inoculated into media containing low levels of fixed nitrogen (yeast extract). Diazotrophy of IRBG500 was confirmed by measurement of 15N2 incorporation and by sequence analysis of the PCR-amplified fragment of nifH. To examine its interaction with rice, strain IRBG500 was marked with gusA fused to a constitutive promoter, and the marked strain was inoculated onto rice seedlings under axenic conditions. At 3 days after inoculation, the roots showed blue staining, which was most intense at the points of lateral root emergence and at the root tip. At 6 days, the blue precipitate also appeared in the leaves and stems. More detailed studies using light and transmission electron microscopy combined with immunogold labeling confirmed that IRBG500 was endophytically established within roots, stems, and leaves. Large numbers of bacteria were observed within intercellular spaces, senescing root cortical cells, aerenchyma, and xylem vessels. They were not observed within intact host cells. Inoculation of IRBG500 resulted in a significant increase in root length and root dry weight but not in total N content of rice variety IR72. The inoculated plants showed ARA, but only when external carbon (e.g., malate, succinate, or sucrose) was added to the rooting medium.
International Journal of Systematic and Evolutionary Microbiology | 1993
Barbara Reinhold-Hurek; Thomas Hurek; M. Gillis; B. Hoste; M. Vancanneyt; Karel Kersters; J. De Ley
Among the nitrogen-fixing bacteria associated with roots of Leptochloa fusca (L.) Kunth in saline-sodic soils in the Punjab of Pakistan, we repeatedly found yellow-pigmented, straight to curved, gram-negative rods. To group and identify these organisms, we examined morphological, nutritional, and biochemical features and performed polyacrylamide gel electrophoretic analyses of cellular proteins, gas chromatographic analyses of fatty acids, DNA-rRNA hybridizations, and DNA-DNA hybridizations. Our results showed that 11 isolates formed five groups distinct at the species level, with each group containing one to three members. These bacteria constituted a separate rRNA branch in rRNA superfamily III (corresponding to the beta subclass of the Proteobacteria) at a branching Tm(e) level of 67.7°C [Tm(e) is the temperature at which 50% of a hybrid is denatured under standard conditions]. On this branch, the five groups were located in two clusters with Tm(e) values of 79.4 to 80.4°C and around 71.5°C. We propose a new genus, the genus Azoarcus, for these strains. Azoarcus indigens is the type species and has a growth factor requirement; its type strain is strain VB32 (= LMG 9092). A second named species, Azoarcus communis, includes a strain obtained from French refinery oily sludge, strain LMG 5514. Bacteria of this genus have a strictly aerobic type of metabolism, fix nitrogen microaerobically, and grow well on salts of organic acids but not on carbohydrates. Swedish isolates obtained from human sources (E. Falsen group 15 strains LMG 6115 and LMG 6116), as well as “[Pseudomonas] gasotropha” LMG 7583T, were also located on this rRNA branch at a lower Tm(e) level (70.4 to 71.2°C).
Molecular Plant-microbe Interactions | 2002
Thomas Hurek; Linda L. Handley; Barbara Reinhold-Hurek; Yves Piché
The extent to which the N2-fixing bacterial endophyte Azoarcus sp. strain BH72 in the rhizosphere of Kallar grass can provide fixed nitrogen to the plant was assessed by evaluating inoculated plants grown in the greenhouse and uninoculated plants taken from the natural environment. The inoculum consisted of either wild-type bacteria or nifK- mutant strain BHNKD4. In N2-deficient conditions, plants inoculated with strain BH72 (N2-fixing test plants) grew better and accumulated more nitrogen with a lower delta15N signature after 8 months than did plants inoculated with the mutant strain (non-N2-fixing control plants). Polyadenylated or polymerase chain reaction-amplified BH72 nifH transcripts were retrieved from test but not from control plants. BH72 nifH transcripts were abundant. The inocula could not be reisolated. These results indicate that Azoarcus sp. BH72 can contribute combined N2 to the plant in an unculturable state. Abundant BH72 nifH transcripts were detected also in uninoculated plants taken from the natural environment, from which Azoarcus sp. BH72 also could not be isolated. Quantification of nitrogenase gene transcription indicated a high potential of strain BH72 for biological N2 fixation in association with roots. Phylogenetic analysis of nitrogenase sequences predicted that uncultured grass endophytes including Azoarcus spp. are ecologically dominant and play an important role in N2-fixation in natural grass ecosystems.
Molecular Microbiology | 1998
Juliane Dörr; Thomas Hurek; Barbara Reinhold-Hurek
Adherence of bacteria to eukaryotic cells is essential for the initiation of infection in many animal and human pathogens, e.g. Neisseria gonorrhoeae and Pseudomonas aeruginosa. Adhesion‐mediating type IV pili, filamentous surface appendages formed by pilin subunits, are crucial virulence factors. Here, we report that type IV pilus‐dependent adhesion is also involved in plant–bacteria and fungus–bacteria interactions. Nitrogen‐fixing, endophytic bacteria, Azoarcus sp., can infect the roots of rice and spread systemically into the shoot without causing symptoms of plant disease. Formation of pili on solid media was dependent on the pilAB locus. PilA encodes an unusually short (6.4 kDa) putative pilin precursor showing 100% homology to the conserved N‐terminus of the Pseudomonas aeruginosa type IV pilin. PilB encodes for a 14.2 kDa polypeptide showing similarity to FimF, a component of type I fimbriae of Escherichia coli. It was found to be extruded beyond the cell surface by immunofluorescence studies, and it may, therefore, be part of a pilus assembly complex or the pilus itself. Both genes are involved in the establishment of bacteria on the root surface of rice seedlings, as detected by fluorescence microscopy. Moreover, both genes are necessary for bacterial adhesion to the mycelium of an ascomycete, which was isolated from the same rhizosphere as the bacteria. In co‐culture with the fungus, Azoarcus sp. forms complex intracytoplasmic membranes, diazosomes, which are related to efficient nitrogen fixation. Adhesion to the mycelium appears to be crucial for this process, as diazosomes were absent and nitrogen fixation rates were decreased in pilAB mutants in co‐culture.
Molecular Plant-microbe Interactions | 1999
Tanja Egener; Thomas Hurek; Barbara Reinhold-Hurek
Transcriptional fusions of gusA and gfp to the nifH gene as well as immunogold labeling with antibodies against the iron protein of nitrogenase revealed high nitrogenase gene expression levels of the endophyte Azoarcus sp. strain BH72 inside infected rice roots (Oryza sativa) in the laboratory. Thus, environmental conditions inside rice roots are permissive for endophytic nitrogen fixation in bacterial microcolonies in the aerenchyma.
Molecular Plant-microbe Interactions | 2006
Lucie Miché; Federico Battistoni; Sabrina Gemmer; Maya Belghazi; Barbara Reinhold-Hurek
The endophyte Azoarcus sp. strain BH72 expresses nitrogenase (nif) genes inside rice roots. We applied a proteomic approach to dissect responses of rice roots toward bacterial colonization and jasmonic acid (JA) treatment. Two sister lineages of Oryza sativa were analyzed with cv. IR42 showing a less compatible interaction with the Azoarcus sp. resulting in slight root browning whereas cv. IR36 was successfully colonized as determined by nifHi::gusA activity. External addition of JA inhibited colonization of roots and caused browning in contrast to the addition of ethylene, applied as ethephon (up to 5 mM). Only two of the proteins induced in cv. IR36 by JA were also induced by the endophyte (SalT, two isoforms). In contrast, seven JA-induced proteins were also induced by bacteria in cv. IR42, indicating that IR42 showed a stronger defense response. Mass spectrometry analysis identified these proteins as pathogenesis-related (PR) proteins (Prb1, RSOsPR10) or proteins sharing domains with receptorlike kinases induced by pathogens. Proteins strongly induced in roots in both varieties by JA were identified as Bowman-Birk trypsin inhibittors, germinlike protein, putative endo-1,3-beta-D-glucosidase, glutathion-S-transferase, and 1-propane-1-carboxylate oxidase synthase, peroxidase precursor, PR10-a, and a RAN protein previously not found to be JA-induced. Data suggest that plant defense responses involving JA may contribute to restricting endophytic colonization in grasses. Remarkably, in a compatible interaction with endophytes, JA-inducible stress or defense responses are apparently not important.