Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara S. Beckman is active.

Publication


Featured researches published by Barbara S. Beckman.


Journal of Cell Biology | 2004

The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone

Christopher Williams; June G. Allison; Gregory A. Vidal; Matthew E. Burow; Barbara S. Beckman; Luis Marrero; Frank E. Jones

In the lactating breast, ERBB4 localizes to the nuclei of secretory epithelium while regulating activities of the signal transducer and activator of transcription (STAT) 5A transcription factor essential for milk-gene expression. We have identified an intrinsic ERBB4 NLS (residues 676–684) within the ERBB4 intracellular domain (4ICD) that is essential for nuclear accumulation of 4ICD. To determine the functional significance of 4ICD nuclear translocation in a physiologically relevant system, we have demonstrated that cotransfection of ERBB4 and STAT5A in a human breast cancer cell line stimulates β-casein promoter activity. Significantly, nuclear localization of STAT5A and subsequent stimulation of the β-casein promoter requires nuclear translocation of 4ICD. Moreover, 4ICD and STAT5A colocalize within nuclei of heregulin β1 (HRG)-stimulated cells and both proteins bind to the endogenous β-casein promoter in T47D breast cancer cells. Together, our results establish a novel molecular mechanism of transmembrane receptor signal transduction involving nuclear cotranslocation of the receptor intracellular domain and associated transcription factor. Subsequent binding of the two proteins at transcription factor target promoters results in activation of gene expression.


Experimental Biology and Medicine | 2003

Apoptosis, Chemoresistance, and Breast Cancer: Insights From the MCF-7 Cell Model System

Rebecca Simstein; Matthew E. Burow; Amanda P. Parker; Christopher B. Weldon; Barbara S. Beckman

The MCF-7 cell line was derived from a patient with metastatic breast cancer in 1970. Since then it has become a prominent model system for the study of estrogen receptor-positive breast cancer. With this model as a focus, this review summarizes important studies addressing tumor necrosis factor-α as a prototypical apoptosis-inducing cytokine in MCF-7 cells. Both survival and death receptor signaling pathways are discussed in terms of their role in chemotherapy-induced apoptosis as well as in chemoresistance. Novel therapeutic approaches to the treatment of breast cancer are proposed utilizing knowledge of these signaling pathways as targets. Specifically, ceramide metabolism is proposed as a novel target for chemosensitivity, perhaps combined with selective inhibitors of Bcl-2 or PI3K/Akt/nuclear factor-κB. Suggested areas of future research include translational studies manipulating candidate survival and death signaling pathways.


Cancer Research | 2011

Cytokine Receptor CXCR4 Mediates Estrogen-Independent Tumorigenesis, Metastasis, and Resistance to Endocrine Therapy in Human Breast Cancer

Lyndsay V. Rhodes; Sarah P. Short; Nicole F. Neel; Virgilio A. Salvo; Yun Zhu; Steven Elliott; Yongkun Wei; Dihua Yu; Menghong Sun; Shannon E. Muir; Juan P. Fonseca; Melyssa R. Bratton; Chris Segar; Syreeta L. Tilghman; Tammy Sobolik-Delmaire; Linda W. Horton; Snjezana Zaja-Milatovic; Bridgette M. Collins-Burow; Scott Wadsworth; Barbara S. Beckman; Charles E. Wood; Suzanne A. W. Fuqua; Kenneth P. Nephew; Paul Dent; Rebecca A. Worthylake; Tyler J. Curiel; Mien Chie Hung; Ann Richmond; Matthew E. Burow

Estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer patients. Metastasis has been associated with chemokine signaling through the SDF-1-CXCR4 axis. Thus, the development of estrogen independence and endocrine therapy resistance in breast cancer patients may be driven by SDF-1-CXCR4 signaling. Here we report that CXCR4 overexpression is indeed correlated with worse prognosis and decreased patient survival irrespective of the status of the estrogen receptor (ER). Constitutive activation of CXCR4 in poorly metastatic MCF-7 cells led to enhanced tumor growth and metastases that could be reversed by CXCR4 inhibition. CXCR4 overexpression in MCF-7 cells promoted estrogen independence in vivo, whereas exogenous SDF-1 treatment negated the inhibitory effects of treatment with the anti-estrogen ICI 182,780 on CXCR4-mediated tumor growth. The effects of CXCR4 overexpression were correlated with SDF-1-mediated activation of downstream signaling via ERK1/2 and p38 MAPK (mitogen activated protein kinase) and with an enhancement of ER-mediated gene expression. Together, these results show that enhanced CXCR4 signaling is sufficient to drive ER-positive breast cancers to a metastatic and endocrine therapy-resistant phenotype via increased MAPK signaling. Our findings highlight CXCR4 signaling as a rational therapeutic target for the treatment of ER-positive, estrogen-independent breast carcinomas needing improved clinical management.


Neuroscience & Biobehavioral Reviews | 1994

The neurotrophins and their receptors: Structure, function, and neuropathology

Lawrence M. Maness; Abba J. Kastin; Joseph T. Weber; William A. Banks; Barbara S. Beckman; James E. Zadina

The neurotrophins are a family of polypeptides that promote differentiation and survival of select peripheral and central neurons. Nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4, and neurotrophin-5 are included in this group. In recent years, tremendous advances have been made in the study of these factors. This has stimulated our review of the field, characterizing the neurotrophins from initial isolation to molecular analysis. The review also discusses their synthesis, localization, and responsive tissues, in both the periphery and CNS. The complex receptor interactions of the neurotrophins are also analyzed, as are putative signal transduction mechanisms. Discussion of the observed and postulated involvement in neuropathological disorders leads to the conclusion that the neurotrophins are involved in the function and dysfunction of the nervous system.


Journal of Biological Chemistry | 1997

Post-transcriptional Regulation of Erythropoietin mRNA Stability by Erythropoietin mRNA-binding Protein

Eric McGary; Isaac J. Rondon; Barbara S. Beckman

We have previously identified a sequence in the 3′-untranslated region (3′-UTR) of erythropoietin (Epo) mRNA which binds a protein(s), erythropoietin mRNA-binding protein (ERBP). A mutant lacking the ERBP binding site (EpoM) was generated. Hep3B cells were stably transfected with a wild-type Epo (EpoWT) cDNA or EpoM cDNA construct located downstream of a promoter of cytomegalovirus. Following inhibition of transcription, the half-lives of EpoWT and EpoM mRNAs were 7 h and 2.5 h in normoxia, respectively. The EpoM mRNA half-life remained unchanged in hypoxia. EpoWT mRNA half-life increased ~40% in response to a 6-h hypoxic pre-exposure and an additional ~50% when pre-exposed to 12 h hypoxia. The steady-state level of EpoWT mRNA was 4-fold that of EpoM mRNA reflecting the difference in mRNA decay rates in normoxia. The Epo protein level expressed from exogenous EpoM was unchanged in both normoxia and hypoxia. In contrast, the Epo protein level expressed from exogenous EpoWT increased 50% in hypoxia when compared with normoxia. These observations were further supported by chimeric chloramphenicol acetyltransferase and Epo-3′-UTR constructs. We have demonstrated that Epo mRNA stability was modulated in normoxia and further by hypoxia, therefore, providing evidence that Epo is regulated at the post-transcriptional level through ERBP complex formation.


Cancer Biology & Therapy | 2011

Targeting NFĸB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2.

James W. Antoon; Martin D. White; Evelyn M. Slaughter; Jennifer L. Driver; Hafez Khalili; Steven Elliott; Charles D. Smith; Matthew E. Burow; Barbara S. Beckman

Resistance to chemotherapy remains a significant obstacle in the treatment of hormone- independent breast cancer. Recent evidence suggests that altered sphingolipid signaling through increased sphingosine kinase activity may be an important mediator of breast cancer drug resistance. Sphingosine kinase-1 (Sphk1) is a proposed key regulator of breast cancer tumorigenesis, proliferation and resistance. There is, however, conflicting data on the role of sphingosine kinase-2 (Sphk2) in cancer biology and resistance, with some suggesting that Sphk2 has an opposing role to that of Sphk1. Here, we studied the effects of the novel selective Sphk2 inhibitor, ABC294640 (3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl) amide), on human breast cancer. ABC294640 blocked both viability and survival at low micromolar IC50 concentrations in the endocrine therapy-resistant MDA-MB-231 and chemoresistant MCF-7TN-R cell systems. Treatment with the inhibitor significantly reduced proliferation, as seen in immunofluorescence staining of Ki-67 in vitro. Interestingly, pharmacological inhibition of Sphk2 induced apoptosis through the intrinsic programmed cell death pathway. Furthermore, ABC294640 also diminished NF-ĸB survival signaling, through decreased activation of the Ser536 phosphorylation site on the p65 subunit. Xenografts of MCF-7TN-R cells growing in immunocompromised mice were utilized to validate the therapeutic efficacy of the sphingosine kinase-2 inhibitor. Treatment with 50 mg of ABC294640/kg completely blocked tumor volume in this model. These results indicate that pharmacological inhibition of Sphk2 with the orally bioavailable selective inhibitor, ABC294640, has therapeutic potential in the treatment of chemo- and endocrine therapy- resistant breast cancer.


Clinical Cancer Research | 2006

Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis

Virgilo A. Salvo; Stephen M. Boue; Juan P. Fonseca; Steven Elliott; Cynthia Corbitt; Bridgette M. Collins-Burow; Tyler J. Curiel; Sudesh Srivastav; Betty Y. Shih; Carol H. Carter-Wientjes; Charles E. Wood; Paul W. Erhardt; Barbara S. Beckman; John A. McLachlan; Thomas E. Cleveland; Matthew E. Burow

Purpose: We have identified the phytoalexin compounds glyceollins I, II, and III, which exhibit marked antiestrogenic effects on estrogen receptor function and estrogen-dependent tumor growth in vivo. The purpose of this study was to investigate the interactions among the induced soy phytoalexins glyceollins I, II, and III on the growth of estrogen-dependent MCF-7 breast cancer and BG-1 ovarian cancer cells implanted in ovariectomized athymic mice. Experimental Design: Four treatment groups for each cell line were used: vehicle control, 20 mg/kg/mouse/d glyceollin mixture injection, 0.72 mg estradiol (E2) implant, and E2 implant + 20 mg/kg/mouse/d glyceollin injection. Results: Treatment with glyceollin suppressed E2-stimulated tumor growth of MCF-7 cells (−53.4%) and BG-1 cells (−73.1%) in ovariectomized athymic mice. These tumor-inhibiting effects corresponded with significantly lower E2-induced progesterone receptor expression in the tumors. In contrast to tamoxifen, the glyceollins had no estrogen-agonist effects on uterine morphology and partially antagonized the uterotropic effects of estrogen. Conclusions: These findings identify glyceollins as antiestrogenic agents that may be useful in the prevention or treatment of breast and ovarian carcinoma.


Biochimica et Biophysica Acta | 2012

MEK5/ERK5 pathway: the first fifteen years.

Barbara A. Drew; Matthew E. Burow; Barbara S. Beckman

While conventional MAP kinase pathways are one of the most highly studied signal transduction molecules, less is known about the MEK5 signaling pathway. This pathway has been shown to play a role in normal cell growth cycles, survival and differentiation. The MEK5 pathway is also believed to mediate the effects of a number of oncogenes. MEK5 is the upstream activator of ERK5 in many epithelial cells. Activation of the MEK-MAPK pathway is a frequent event in malignant tumor formation and contributes to chemoresistance and anti-apoptotic signaling. This pathway may be involved in a number of more aggressive, metastatic varieties of cancer due to its role in cell survival, proliferation and EMT transitioning. Further study of this pathway may lead to new prognostic factors and new drug targets to combat more aggressive forms of cancer.


Breast Cancer Research and Treatment | 2010

Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence

Lyndsay V. Rhodes; Shannon E. Muir; Steven Elliott; Lori M. Guillot; James W. Antoon; Patrice Penfornis; Syreeta L. Tilghman; Virgilio A. Salvo; Juan P. Fonseca; Michelle Lacey; Barbara S. Beckman; John A. McLachlan; Brian G. Rowan; Radhika Pochampally; Matthew E. Burow

Adult human mesenchymal stem cells (hMSCs) have been shown to home to sites of breast cancer and integrate into the tumor stroma. We demonstrate here the effect of hMSCs on primary breast tumor growth and the progression of these tumors to hormone independence. Co-injection of bone marrow-derived hMSCs enhances primary tumor growth of the estrogen receptor-positive, hormone-dependent breast carcinoma cell line MCF-7 in the presence or absence of estrogen in SCID/beige mice. We also show hormone-independent growth of MCF-7 cells when co-injected with hMSCs. These effects were found in conjunction with increased immunohistochemical staining of the progesterone receptor in the MCF-7/hMSC tumors as compared to MCF-7 control tumors. This increase in PgR expression indicates a link between MCF-7 cells and MSCs through ER-mediated signaling. Taken together, our data reveal the relationship between tumor microenvironment and tumor growth and the progression to hormone independence. This tumor stroma-cell interaction may provide a novel target for the treatment of estrogen receptor-positive, hormone-independent, and endocrine-resistant breast carcinoma.


Breast Cancer Research | 2008

Proteomic analysis of tumor necrosis factor-α resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype

Changhua Zhou; Ashley M. Nitschke; Wei Xiong; Qiang Zhang; Yan Tang; Micheal J Bloch; Steven Elliott; Yun Zhu; Lindsey E. Bazzone; David C. Yu; Christopher B. Weldon; Rachel Schiff; John A. McLachlan; Barbara S. Beckman; Thomas E. Wiese; Kenneth P. Nephew; Bin Shan; Matthew E. Burow; Guangdi Wang

IntroductionDespite intensive study of the mechanisms of chemotherapeutic drug resistance in human breast cancer, few reports have systematically investigated the mechanisms that underlie resistance to the chemotherapy-sensitizing agent tumor necrosis factor (TNF)-α. Additionally, the relationship between TNF-α resistance mediated by MEK5/Erk5 signaling and epithelial-mesenchymal transition (EMT), a process associated with promotion of invasion, metastasis, and recurrence in breast cancer, has not previously been investigated.MethodsTo compare differences in the proteome of the TNF-α resistant MCF-7 breast cancer cell line MCF-7-MEK5 (in which TNF-α resistance is mediated by MEK5/Erk5 signaling) and its parental TNF-a sensitive MCF-7 cell line MCF-7-VEC, two-dimensional gel electrophoresis and high performance capillary liquid chromatography coupled with tandem mass spectrometry approaches were used. Differential protein expression was verified at the transcriptional level using RT-PCR assays. An EMT phenotype was confirmed using immunofluorescence staining and gene expression analyses. A short hairpin RNA strategy targeting Erk5 was utilized to investigate the requirement for the MEK/Erk5 pathway in EMT.ResultsProteomic analyses and PCR assays were used to identify and confirm differential expression of proteins. In MCF-7-MEK5 versus MCF-7-VEC cells, vimentin (VIM), glutathione-S-transferase P (GSTP1), and creatine kinase B-type (CKB) were upregulated, and keratin 8 (KRT8), keratin 19 (KRT19) and glutathione-S-transferase Mu 3 (GSTM3) were downregulated. Morphology and immunofluorescence staining for E-cadherin and vimentin revealed an EMT phenotype in the MCF-7-MEK5 cells. Furthermore, EMT regulatory genes SNAI2 (slug), ZEB1 (δ-EF1), and N-cadherin (CDH2) were upregulated, whereas E-cadherin (CDH1) was downregulated in MCF-7-MEK5 cells versus MCF-7-VEC cells. RNA interference targeting of Erk5 reversed MEK5-mediated EMT gene expression.ConclusionsThis study demonstrates that MEK5 over-expression promotes a TNF-α resistance phenotype associated with distinct proteomic changes (upregulation of VIM/vim, GSTP1/gstp1, and CKB/ckb; and downregulation of KRT8/krt8, KRT19/krt19, and GSTM3/gstm3). We further demonstrate that MEK5-mediated progression to an EMT phenotype is dependent upon intact Erk5 and associated with upregulation of SNAI2 and ZEB1 expression.

Collaboration


Dive into the Barbara S. Beckman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jawed Alam

Ochsner Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge