Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara S. Mallon is active.

Publication


Featured researches published by Barbara S. Mallon.


Nature Biotechnology | 2007

Characterization of human embryonic stem cell lines by the International Stem Cell Initiative

Oluseun Adewumi; Behrouz Aflatoonian; Lars Ährlund-Richter; Michal Amit; Peter W. Andrews; Gemma Beighton; Paul Bello; Nissim Benvenisty; Lorraine S. Berry; Simon Bevan; Barak Blum; Justin Brooking; Kevin G. Chen; Andre Choo; Gary A. Churchill; Marie Corbel; Ivan Damjanov; John S Draper; Petr Dvorak; Katarina Emanuelsson; Roland A. Fleck; Angela Ford; Karin Gertow; Marina Gertsenstein; Paul J. Gokhale; Rebecca S. Hamilton; Alex Hampl; Lyn Healy; Outi Hovatta; Johan Hyllner

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.


Cell Stem Cell | 2014

Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics

Kevin G. Chen; Barbara S. Mallon; Ronald D. G. McKay; Pamela Gehron Robey

Human pluripotent stem cells (hPSCs) provide powerful resources for application in regenerative medicine and pharmaceutical development. In the past decade, various methods have been developed for large-scale hPSC culture that rely on combined use of multiple growth components, including media containing various growth factors, extracellular matrices, 3D environmental cues, and modes of multicellular association. In this Protocol Review, we dissect these growth components by comparing cell culture methods and identifying the benefits and pitfalls associated with each one. We further provide criteria, considerations, and suggestions to achieve optimal cell growth for hPSC expansion, differentiation, and use in future therapeutic applications.


Blood | 2015

Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein

Haiying Qin; Monica Cho; Waleed Haso; Ling Zhang; Sarah K. Tasian; Htoo Zarni Oo; Gian Luca Negri; Yongshun Lin; Jizhong Zou; Barbara S. Mallon; Shannon L. Maude; David T. Teachey; David M. Barrett; Rimas J. Orentas; Mads Daugaard; Poul Sorensen; Stephan A. Grupp; Terry J. Fry

Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.


Stem Cell Research | 2014

Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin.

Barbara S. Mallon; Rebecca S. Hamilton; Olga A. Kozhich; Kory R. Johnson; Yang C. Fann; Mahendra S. Rao; Pamela Gehron Robey

Many studies have compared the genetic and epigenetic profiles of human induced pluripotent stem cells (hiPSCs) to human embryonic stem cells (hESCs) and yet the picture remains unclear. To address this, we derived a population of neural precursor cells (NPCs) from the H1 (WA01) hESC line and generated isogenic iPSC lines by reprogramming. The gene expression and methylation profile of three lines were compared to the parental line and intermediate NPC population. We found no gene probe with expression that differed significantly between hESC and iPSC samples under undifferentiated or differentiated conditions. Analysis of the global methylation pattern also showed no significant difference between the two PSC populations. Both undifferentiated populations were distinctly different from the intermediate NPC population in both gene expression and methylation profiles. One point to note is that H1 is a male line and so extrapolation to female lines should be cautioned. However, these data confirm our previous findings that there are no significant differences between hESCs and hiPSCs at the gene expression or methylation level.


Stem Cells | 2012

Regulation and expression of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells.

Raji Padmanabhan; Kevin G. Chen; Jean-Pierre Gillet; Misty Handley; Barbara S. Mallon; Rebecca S. Hamilton; Kye-Yoon Park; Sudhir Varma; Michele G. Mehaffey; Pamela Gehron Robey; Ronald D. G. McKay; Michael M. Gottesman

The expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However, the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function. In this study, we used quantitative real‐time PCR, Northern blots, whole genome RNA sequencing, Western blots, and immunofluorescence microscopy to study ABCG2 expression in hESCs. We found that full‐length ABCG2 mRNA transcripts are expressed in undifferentiated hESC lines. However, ABCG2 protein was undetectable even under embryoid body differentiation or cytotoxic drug induction. Moreover, surface ABCG2 protein was coexpressed with the differentiation marker stage‐specific embryonic antigen‐1 of hESCs, following constant BMP‐4 signaling at days 4 and 6. This expression was tightly correlated with the downregulation of two microRNAs (miRNAs) (i.e., hsa‐miR‐519c and hsa‐miR‐520h). Transfection of miRNA mimics and inhibitors of these two miRNAs confirmed their direct involvement in the regulation ABCG2 translation. Our findings clarify the controversy regarding the expression of the ABCG2 gene and also provide new insights into translational control of the expression of membrane transporter mRNAs by miRNAs in hESCs. STEM Cells2012;30:2175–2187


Stem Cell Reviews and Reports | 2013

Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells

O. A. Kozhich; Rebecca S. Hamilton; Barbara S. Mallon

Precise, robust and scalable directed differentiation of pluripotent stem cells is an important goal with respect to disease modeling or future therapies. Using the AggreWell™400 system we have standardized the differentiation of human embryonic and induced pluripotent stem cells to a neuronal fate using defined conditions. This allows reproducibility in replicate experiments and facilitates the direct comparison of cell lines. Since the starting point for EB formation is a single cell suspension, this protocol is suitable for standard and novel methods of pluripotent stem cell culture. Moreover, an intermediate population of neural precursor cells, which are routinely >95% NCAMpos and Tra-1-60neg by FACS analysis, may be expanded and frozen prior to differentiation allowing a convenient starting point for downstream experiments.


Stem Cell Research | 2012

Non-colony type monolayer culture of human embryonic stem cells.

Kevin G. Chen; Barbara S. Mallon; Rebecca S. Hamilton; Olga A. Kozhich; Kye-Yoon Park; Daniel J. Hoeppner; Pamela Gehron Robey; Ronald D. G. McKay

Regenerative medicine, relying on human embryonic stem cell (hESC) technology, opens promising new avenues for therapy of many severe diseases. However, this approach is restricted by limited production of the desired cells due to the refractory properties of hESC growth in vitro. It is further hindered by insufficient control of cellular stress, growth rates, and heterogeneous cellular states under current culture conditions. In this study, we report a novel cell culture method based on a non-colony type monolayer (NCM) growth. Human ESCs under NCM remain pluripotent as determined by teratoma assays and sustain the potential to differentiate into three germ layers. This NCM culture has been shown to homogenize cellular states, precisely control growth rates, significantly increase cell production, and enhance hESC recovery from cryopreservation without compromising chromosomal integrity. This culture system is simple, robust, scalable, and suitable for high-throughput screening and drug discovery.


Stem Cell Research | 2014

Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation

Kevin G. Chen; Barbara S. Mallon; Kory R. Johnson; Rebecca S. Hamilton; Ronald D. G. McKay; Pamela Gehron Robey

Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications.


Neuropsychopharmacology | 2017

CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit.

Chun Ting Lee; Jia Chen; Abigail A. Kindberg; Raphael M. Bendriem; Charles E. Spivak; Melanie P. Williams; Christopher T. Richie; Annelie Handreck; Barbara S. Mallon; Carl R. Lupica; Da Ting Lin; Brandon K. Harvey; Deborah C. Mash; William J. Freed

Because of unavoidable confounding variables in the direct study of human subjects, it has been difficult to unravel the effects of prenatal cocaine exposure on the human fetal brain, as well as the cellular and biochemical mechanisms involved. Here, we propose a novel approach using a human pluripotent stem cell (hPSC)-based 3D neocortical organoid model. This model retains essential features of human neocortical development by encompassing a single self-organized neocortical structure, without including an animal-derived gelatinous matrix. We reported previously that prenatal cocaine exposure to rats during the most active period of neural progenitor proliferation induces cytoarchitectural changes in the embryonic neocortex. We also identified a role of CYP450 and consequent oxidative ER stress signaling in these effects. However, because of differences between humans and rodents in neocorticogenesis and brain CYP metabolism, translation of the research findings from the rodent model to human brain development is uncertain. Using hPSC 3D neocortical organoids, we demonstrate that the effects of cocaine are mediated through CYP3A5-induced generation of reactive oxygen species, inhibition of neocortical progenitor cell proliferation, induction of premature neuronal differentiation, and interruption of neural tissue development. Furthermore, knockdown of CYP3A5 reversed these cocaine-induced pathological phenotypes, suggesting CYP3A5 as a therapeutic target to mitigate the deleterious neurodevelopmental effects of prenatal cocaine exposure in humans. Moreover, 3D organoid methodology provides an innovative platform for identifying adverse effects of abused psychostimulants and pharmaceutical agents, and can be adapted for use in neurodevelopmental disorders with genetic etiologies.


Stem Cells Translational Medicine | 2017

Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes

Yongshun Lin; Kaari Linask; Barbara S. Mallon; Kory R. Johnson; Michael G. Klein; Jeanette Beers; Wen Xie; Yubin Du; Chengyu Liu; Yinzhi Lai; Jizhong Zou; Mark C. Haigney; Hushan Yang; Mahendra S. Rao; Guokai Chen

Cardiomyocytes can be differentiated from human pluripotent stem cells (hPSCs) in defined conditions, but efficient and consistent cardiomyocyte differentiation often requires expensive reagents such as B27 supplement or recombinant albumin. Using a chemically defined albumin‐free (E8 basal) medium, we identified heparin as a novel factor that significantly promotes cardiomyocyte differentiation efficiency, and developed an efficient method to differentiate hPSCs into cardiomyocytes. The treatment with heparin helped cardiomyocyte differentiation consistently reach at least 80% purity (up to 95%) from more than 10 different hPSC lines in chemically defined Dulbeccos modified Eagles medium/F‐12‐based medium on either Matrigel or defined matrices like vitronectin and Synthemax. One of heparins main functions was to act as a Wnt modulator that helped promote robust and consistent cardiomyocyte production. Our study provides an efficient, reliable, and cost‐effective method for cardiomyocyte derivation from hPSCs that can be used for potential large‐scale drug screening, disease modeling, and future cellular therapies. Stem Cells Translational Medicine 2017;6:527–538

Collaboration


Dive into the Barbara S. Mallon's collaboration.

Top Co-Authors

Avatar

Rebecca S. Hamilton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin G. Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kye-Yoon Park

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pamela Gehron Robey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ronald D. G. McKay

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Kory R. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Abigail A. Kindberg

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Brandon K. Harvey

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Christopher T. Richie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chun Ting Lee

National Institute on Drug Abuse

View shared research outputs
Researchain Logo
Decentralizing Knowledge