Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Sartori is active.

Publication


Featured researches published by Barbara Sartori.


PLOS ONE | 2008

Calcium Triggered Lα-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS

Anan Yaghmur; Peter Laggner; Barbara Sartori; Michael Rappolt

Background Awad et al. [1] reported on the Ca2+-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca2+ solutions. Methodology/Principal Findings Under static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of ∼140 Å (Lα-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca2+ ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca2+ ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca2+>2), Ca2+ ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H2). Our results reveal that a binding ratio of 1 Ca2+ per 8 DOPG is sufficient for the formation of the H2 phase. At 50°C a direct transition from the vesicles to the H2 phase was observed, whereas at ambient temperature (20°C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H2 phase was detected. Conclusions/Significance The strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles.


Lab on a Chip | 2009

Free jet micromixer to study fast chemical reactions by small angle X-ray scattering

Benedetta Marmiroli; Gianluca Grenci; Fernando Cacho-Nerin; Barbara Sartori; Enrico Ferrari; Peter Laggner; Luca Businaro; Heinz Amenitsch

We present the design, fabrication process, and the first test results of a high aspect ratio micromixer combined with a free jet for under 100 micros time resolved studies of chemical reactions. The whole system has been optimized for synchrotron small angle X-ray scattering (SAXS) experiments. These studies are of particular interest to understand the early stages of chemical reactions, such as the kinetics of nanoparticle formation. The mixer is based on hydrodynamic focusing and works in the laminar regime. The use of a free jet overcomes the fouling of the channels and simultaneously circumvents background scattering from the walls. The geometrical parameters of the device have been optimized using finite element simulations, resulting in smallest features with radius <1 microm, and a channel depth of 60 microm, thus leading to an aspect ratio >60. To achieve the desired dimensions deep X-ray lithography (DXRL) has been employed. The device has been tested. First the focusing effect has been visualized using fluorescein. Then the evolution and stability of the jet, which exits the mixer nozzle at 13 m s(-1), have been characterized. Finally SAXS measurements have been conducted of the formation of calcium carbonate from calcium chloride and sodium carbonate. The fastest measurement is 75 micros after the beginning of the mixing of the reagents. The nanostructural evolution of chemical reactions is clearly discernible.


Langmuir | 2012

Self-assembled nanostructures of fully hydrated monoelaidin-elaidic acid and monoelaidin-oleic acid systems.

Anan Yaghmur; Barbara Sartori; Michael Rappolt

In recent years, there has been a surge of interest in exploring the effect of trans-fatty acids (TFAs) on biological membrane properties. The research studies are motivated by an increasing body of evidence suggesting that the consumption of TFAs increases the risk of developing negative health effects such as coronary heart disease and cancer. The ultimate goal of studying the lipid-fatty acid interactions at the molecular level is to predict the biological role of fatty acids in cells. In this regard, it is interesting to elucidate the effect of loading TFAs and their counterpart cis-fatty acids (CFAs) on the physical properties of lipid model membranes. Here, the present study focuses on discussing the following: (1) the effect of mixing monoelaidin (ME, TFA-containing lipid) with its counterpart monoolein (MO, CFA-containing lipid) on modulating the fully hydrated self-assembled structure, and (2) the influence of solubilizing oleic acid (OA) and its trans counterpart elaidic acid (EA) on the fully hydrated ME system. The ME model membrane was selected due to its sensitivity to variations in lipid composition and temperature. Synchrotron small-angle X-ray scattering (SAXS) was applied for studying the temperature-dependent structural behavior of the fully hydrated ME/MO-based system prepared with an equal ME/MO weight ratio and also for characterizing the fully hydrated OA- and EA-loaded ME systems. Wide-angle X-ray (WAXS) experiments were also performed for characterizing the formed crystalline lamellar phases at ambient temperatures. The results demonstrate the significant influence of the partial replacement of ME by MO on the phase behavior. The addition of MO induces the lamellar-nonlamellar phase transitions at ambient temperatures and promotes the formation of the inverted type hexagonal (H(2)) phase above 72 °C. The fully hydrated ME/EA and ME/OA systems with their rich polymorphism exhibit an interesting temperature-dependent complex behavior. The experimental findings show that the temperature-induced phase transitions are dictated by the solubilized fatty acid concentration and its configuration. Both EA and OA have a significant impact on the fully hydrated ME system. Similar to previous published studies, OA induces a significantly stronger mean negative membrane curvature as compared to EA. The two phase diagrams are discussed in terms of water-lipid and lipid-fatty acid interactions, membrane bending, and lipid packing concepts. A newly observed interesting epitaxial relationship for the lamellar-hexagonal phase transition in the EA-loaded ME system is illustrated and discussed in detail.


Chemistry and Physics of Lipids | 2008

Conformational and hydrational properties during the Lβ- to Lα- and Lα- to HII-phase transition in phosphatidylethanolamine

Michael Rappolt; Aden Hodzic; Barbara Sartori; Michel Ollivon; Peter Laggner

Differential scanning calorimetry (DSC) measurements have been carried out simultaneously with small- and wide-angle X-ray scattering recordings on liposomal dispersions of stearoyl-oleoyl-phosphatidylethanolamine (PE) in a temperature range from 20 to 80 degrees C. The main transition temperature, T(m), was determined at 30.9 degrees C with an enthalpy of 28.5 kJ/mol and the lamellar-to-inverse hexagonal phase transition temperature, T(hex), at 61.6 degrees C with an enthalpy of 3.8 kJ/mol. Additionally highly resolved small angle X-ray diffraction experiments performed at equilibrium conditions allowed a reliable decomposition of the lattice spacings into hydrophobic and hydrophilic structure elements as well as the determination of the lipid interface area of the lamellar gel-phase (L(beta)), the fluid lamellar phase (L(alpha)) and of the inverse hexagonal phase (H(II)). The rearrangement of the lipid matrix and the coincident change of free water per lipid is illustrated for both transitions. Last, possible transition mechanisms are discussed on a molecular level.


Biochimica et Biophysica Acta | 2010

Interactions at the bilayer interface and receptor site induced by the novel synthetic pyrrolidinone analog MMK3

Charalambos Fotakis; S. Gega; E. Siapi; Constantinos Potamitis; Kyriakos Viras; Panagiota Moutevelis-Minakakis; Christoforos G. Kokotos; Serdar Durdagi; S. Golic Grdadolnik; Barbara Sartori; Michael Rappolt; Thomas Mavromoustakos

This work presents a thorough investigation of the interaction of the novel synthetic pyrrolidinone analog MMK3 with the model membrane system of dipalmitoylphosphatidylcholine (DPPC) and the receptor active site. MMK3 has been designed to exert antihypertensive activity by functioning as an antagonist of the angiotensin II receptor of subtype 1 (AT(1)). Its low energy conformers were characterized by 2D rotating-frame Overhauser effect spectroscopy (ROESY) in combination with molecular dynamics (MD) simulations. Docking study of MMK3 shows that it fits to the AT(1) receptor as SARTANs, however, its biological activity appears to be lower. Thus, differential scanning calorimetry (DSC), Raman spectroscopy and small angle X-ray scattering (SAXS) experiments on the interaction of MMK3 with DPPC bilayers were carried out and results demonstrate that the drug is well incorporated into the membrane leaflets and furthermore causes partial bilayer interdigitation, although less effective than SARTANs. Thus, it appears that the nature of the bilayer matrix and the stereoelectronic active site requirements of the receptor are responsible for the low bioactivity of MMK3.


International Journal of Nanomedicine | 2014

Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

Barbara Drašler; Damjana Drobne; Novak S; Janez Valant; Boljte S; Otrin L; Michael Rappolt; Barbara Sartori; Aleš Iglič; Kralj-Iglic; Šuštar; Makovec D; Gyergyek S; Hočevar M; Godec M; Jernej Zupanc

Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents.


Nanoscale | 2016

Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

Mauro Moglianetti; Elisa De Luca; Deborah Pedone; Roberto Marotta; Tiziano Catelani; Barbara Sartori; Heinz Amenitsch; Saverio Francesco Retta; Pier Paolo Pompa

In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.


Biophysical Journal | 2012

Lipid sorting by ceramide and the consequences for membrane proteins.

Beate Boulgaropoulos; Michael Rappolt; Barbara Sartori; Heinz Amenitsch; Georg Pabst

We mimicked the effect of sphingomyelinase activity on lipid mixtures of palmitoyl-oleoyl-phosphatidylcholine, sphingomyelin, ceramide, and 10 mol % cholesterol. Using x-ray diffraction experiments in combination with osmotic stress we found, in agreement with previous studies, that ceramide induces a coexistence of L(α) and L(β) domains. A detailed structural analysis of the coexisting domains demonstrated an increase of lipid packing density and membrane thickness in the L(α) domains upon increasing overall ceramide levels. This provides evidence for a ceramide-driven accumulation of cholesterol in the L(α) domains, in support of previous reports. We further determined the bending rigidities of the coexisting domains and found that the accumulation of cholesterol in the L(α) domains stabilizes their bending rigidity, which experiences a dramatic drop in the absence of cholesterol. Deriving experimental estimates for the spontaneous curvature and Gaussian modulus of curvature, we show, using a simple geometric model for ion channels, that in this way changes in the conformational equilibrium of membrane proteins can be kept small.


Applied Physics Letters | 2007

Scanning x-ray microdiffraction of optically manipulated liposomes

Dan Cojoc; Enrico Ferrari; V. Garbin; E. Di Fabrizio; Heinz Amenitsch; Michael Rappolt; Barbara Sartori; Peter Laggner; Manfred Burghammer; Christian Riekel

We show optical tweezers manipulation of individual micron-sized samples investigating at the same time their inner nanostructure by synchrotron diffraction experiments. The validity of this technique is demonstrated for clusters of multilamellar liposomes trapped in single and multiple positions in the optical path of a microfocused x-ray beam and analyzed in a microscanning mode. The signal to background ratio of the first order peak shows that single liposome measurements are feasible. Multiple trapping by means of diffractive optical elements is demonstrated as an effective manipulation tool for future x-ray diffraction studies of the interaction between different sample entities.


Langmuir | 2013

Control and analysis of oriented thin films of lipid inverse bicontinuous cubic phases using grazing incidence small-angle X-ray scattering.

Martyn Rittman; Heinz Amenitsch; Michael Rappolt; Barbara Sartori; Benjamin M.D. O’Driscoll; Adam M. Squires

Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present time-resolved GISAXS data monitoring these transformations.

Collaboration


Dive into the Barbara Sartori's collaboration.

Top Co-Authors

Avatar

Heinz Amenitsch

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Laggner

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Benedetta Marmiroli

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Enrico Ferrari

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Christian Riekel

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Manfred Burghammer

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Fernando Cacho-Nerin

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sigrid Bernstorff

Elettra Sincrotrone Trieste

View shared research outputs
Researchain Logo
Decentralizing Knowledge