Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Spolaore is active.

Publication


Featured researches published by Barbara Spolaore.


Nucleic Acids Research | 2008

Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins

Susanna Cogoi; Manikandan Paramasivam; Barbara Spolaore; Luigi E. Xodo

The human KRAS proto-oncogene contains a critical nuclease hypersensitive element (NHE) upstream of the major transcription initiation site. In this article, we demonstrate by primer-extension experiments, PAGE, chemical footprinting, CD, UV and FRET experiments that the G-rich strand of NHE (32R) folds into intra-molecular G-quadruplex structures. Fluorescence data show that 32R in 100 mM KCl melts with a biphasic profile, showing the formation of two distinct G-quadruplexes with Tm of ∼55°C (Q1) and ∼72°C (Q2). DMS-footprinting and CD suggest that Q1 can be a parallel and Q2 a mixed parallel/antiparallel G-quadruplex. When dsNHE (32R hybridized to its complementary) is incubated with a nuclear extract from Panc-1 cells, three DNA–protein complexes are observed by EMSA. The complex of slower mobility is competed by quadruplex 32R, but not by mutant oligonucleotides, which cannot form a quadruplex structure. Using paramagnetic beads coupled with 32R, we pulled down from the Panc-1 extract proteins with affinity for quadruplex 32R. One of these is the heterogeneous nuclear ribonucleoprotein A1, which was previously reported to unfold quadruplex DNA. Our study suggests a role of quadruplex DNA in KRAS transcription and provides the basis for the rationale design of molecular strategies to inhibit the expression of KRAS.


Human Molecular Genetics | 2010

Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy

Sara Menazza; Bert Blaauw; Tania Tiepolo; Luana Toniolo; Paola Braghetta; Barbara Spolaore; Carlo Reggiani; Fabio Di Lisa; Paolo Bonaldo; Marcella Canton

Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.


Journal of Biological Chemistry | 2006

The AT-hook of the Chromatin Architectural Transcription Factor High Mobility Group A1a Is Arginine-methylated by Protein Arginine Methyltransferase 6

Riccardo Sgarra; Jaeho Lee; Michela A. Tessari; Sandro Altamura; Barbara Spolaore; Vincenzo Giancotti; Mark T. Bedford; Guidalberto Manfioletti

The HMGA1a protein belongs to the high mobility group A (HMGA) family of architectural nuclear factors, a group of proteins that plays an important role in chromatin dynamics. HMGA proteins are multifunctional factors that associate both with DNA and nuclear proteins that have been involved in several nuclear processes, such as transcriptional regulation, viral integration, DNA repair, RNA processing, and chromatin remodeling. The activity of HMGA proteins is finely modulated by a variety of post-translational modifications. Arginine methylation was recently demonstrated to occur on HMGA1a protein, and it correlates with the apoptotic process and neoplastic progression. Methyltransferases responsible for these modifications are unknown. Here we show that the protein arginine methyltransferase PRMT6 specifically methylates HMGA1a protein both in vitro and in vivo. By mass spectrometry, the sites of methylation were unambiguously mapped to Arg57 and Arg59, two residues which are embedded in the second AT-hook, a region critical for both protein-DNA and protein-protein interactions and whose modification may cause profound alterations in the HMGA network. The in vivo association of HMGA and PRMT6 place this yet functionally uncharacterized methyltransferase in the well established functional context of the chromatin structure organization.


Bioconjugate Chemistry | 2009

Transglutaminase-Mediated PEGylation of Proteins: Direct Identification of the Sites of Protein Modification by Mass Spectrometry using a Novel Monodisperse PEG

Anna Mero; Barbara Spolaore; Francesco M. Veronese; Angelo Fontana

Poly(ethylene glycol) (PEG) has been widely used to prolong the residence time of proteins in blood and to decrease their immunogenicity and antigenicity. A drawback of this polymer lies in its polydispersity that makes difficult the identification of the sites of protein modification. This is a mandatory requirement if a PEGylated protein should be approved as a drug. Here, a fast and reliable method is proposed to characterize proteins conjugated at the level of glutamine (Gln) residues using microbial transglutaminase (TGase). The novelty resides in the use of a monodisperse Boc-PEG-NH(2) for the derivatization that allows the direct identification of the sites of PEGylation by electrospray ionization mass spectrometry (ESI-MS). The procedure has been tested on three model proteins, namely, human granulocyte colony-stimulating factor, human growth hormone, and horse heart apomyoglobin. The Gln residues linked to the polymer chain were easily identified by ESI-MS and tandem MS analyses, demonstrating the advantage of using a monodisperse polymer in combination with mass spectrometry for an easy characterization of conjugated proteins. Interestingly, the PEGylation reaction led to the production only of mono- and bis-derivative products, indicating that the TGase-mediated PEGylation can be extremely selective and thus very useful for the derivatization of protein drugs.


FEBS Journal | 2010

The oleic acid complexes of proteolytic fragments of α-lactalbumin display apoptotic activity

Serena Tolin; Giorgia De Franceschi; Barbara Spolaore; Erica Frare; Marcella Canton; Patrizia Polverino de Laureto; Angelo Fontana

The complexes formed by partially folded human and bovine α‐lactalbumin with oleic acid (OA) have been reported to display selective apoptotic activity against tumor cells. These complexes were named human (HAMLET) or bovine (BAMLET) alpha‐lactalbumin made lethal to tumor cells. Here, we analyzed the OA complexes formed by fragments of bovine α‐lactalbumin obtained by limited proteolysis of the protein. Specifically, the fragments investigated were 53–103 and the two‐chain fragment species 1–40/53–123 and 1–40/104–123, these last being the N‐terminal fragment 1–40 covalently linked via disulfide bridges to the C‐terminal fragment 53–123 or 104–123. The OA complexes were obtained by mixing the fatty acid and the fragments in solution (10‐fold and 15‐fold molar excess of OA over protein fragment) or by chromatography of the fragments loaded onto an OA‐conditioned anion exchange column and salt‐induced elution of the OA complexes. Upon binding to OA, all fragments acquire an enhanced content of α‐helical secondary structure. All OA complexes of the fragment species showed apoptotic activity for Jurkat tumor cells comparable to that displayed by the OA complex of the intact protein. We conclude that the entire sequence of the protein is not required to form an apoptotic OA complex, and we suggest that the apoptotic activity of a protein–OA complex does not imply specific binding of the protein.


Biochemistry | 2010

α-Lactalbumin Forms with Oleic Acid a High Molecular Weight Complex Displaying Cytotoxic Activity

Barbara Spolaore; Odra Pinato; Marcella Canton; Marcello Zambonin; Patrizia Polverino de Laureto; Angelo Fontana

α-Lactalbumin (LA) forms with oleic acid (OA) a complex which has been reported to induce the selective death of tumor cells. However, the mechanism by which this complex kills a wide range of tumor cell lines is as yet largely unknown. The difficulty in rationalizing the cytotoxic effects of the LA/OA complex can be due to the fact that the molecular aspects of the interaction between the protein and the fatty acid are still poorly understood, in particular regarding the oligomeric state of the protein and the actual molar ratio of OA over protein in the complex. Here, the effect of LA addition to an OA aqueous solution has been examined by dynamic light scattering measurements and transmission electron microscopy. Upon protein addition, the aggregation state of the rather insoluble OA is dramatically changed, and more water-soluble and smaller aggregates of the fatty acid are formed. A mixture of LA and an excess of OA forms a high molecular weight complex that can be isolated by size-exclusion chromatography and that displays cellular toxicity toward Jurkat cells. On the basis of gel filtration data, cross-linking experiments with glutaraldehyde, and OA titration, we evaluated that the isolated LA/OA complex is given by 4-5 protein molecules that bind 68-85 OA molecules. The protein in the complex adopts a molten globule-like conformation, and it interacts with the fatty acid mostly through its α-helical domain, as indicated by circular dichroism measurements and limited proteolysis experiments. Overall, we interpret our and previous data as indicating that the cellular toxicity of a LA/OA complex is due to the effect of a protein moiety in significantly enhancing the water solubility of the cytotoxic OA and, therefore, that the protein/OA complex can serve mainly as a carrier of the toxic fatty acid in a physiological milieu.


Developmental and Comparative Immunology | 2008

Novel rhamnose-binding lectins from the colonial ascidian Botryllus schlosseri.

Fabio Gasparini; Nicola Franchi; Barbara Spolaore; Loriano Ballarin

In a full-length cDNA library from the compound ascidian Botryllus schlosseri, we identified, by BLAST search against UniProt database, five transcripts, each with complete coding sequence, homologous to known rhamnose-binding lectins (RBLs). Comparisons of the predicted amino acid sequences suggest that they represent different isoforms of a novel RBL, called BsRBL-1-5. Four of these isolectins were found in Botryllus homogenate after purification by affinity chromatography on acid-treated Sepharose, analysis by reverse-phase HPLC and mass spectrometry. Analysis of both molecular masses and tryptic digests of BsRBLs indicated that the N-terminal sequence of the purified proteins starts from residue 22 of the putative amino acid sequence, and residues 1-21 represent a signal peptide. Analysis by mass spectrometry of V8-protease digests confirmed the presence and alignments of the eight cysteines involved in the disulphide bridges that characterise RBLs. Functional studies proved the enhancing effect on phagocytosis of the affinity-purified material. Results are discussed in terms of phylogenetic relationships of BsRBLs with orthologous molecules from protostomes and deuterostomes.


FEBS Journal | 2005

Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles

Cyril Bozzo; Barbara Spolaore; Luana Toniolo; Laurence Stevens; Bruno Bastide; Caroline Cieniewski-Bernard; Angelo Fontana; Yvonne Mounier; Carlo Reggiani

Neural stimulation controls the contractile properties of skeletal muscle fibres through transcriptional regulation of a number of proteins, including myosin isoforms. To study whether neural stimulation is also involved in the control of post‐translational modifications of myosin, we analysed the phosphorylation of alkali myosin light chains (MLC1) and regulatory myosin light chains (MLC2) in rat slow (soleus) and fast (extensor digitorum longus EDL) muscles using 2D‐gel electrophoresis and mass spectrometry. In control rats, soleus and EDL muscles differed in the proportion of the fast and slow isoforms of MLC1 and MLC2 that they contained, and also in the distribution of the variants with distinct isoelectric points identified on 2D gels. Denervation induced a slow‐to‐fast transition in myosin isoforms and increased MLC2 phosphorylation in soleus, whereas the opposite changes in myosin isoform expression and MLC2 phosphorylation were observed in EDL. Chronic low‐frequency stimulation of EDL, with a pattern mimicking that of soleus, induced a fast‐to‐slow transition in myosin isoforms, accompanied by a decreased MLC2 phosphorylation. Chronic administration (10 mg·kg−1·d−1 intraperitoneally) of cyclosporin A, a known inhibitor of calcineurin, did not change significantly the distribution of fast and slow MLC2 isoforms or the phosphorylation of MLC2. All changes in MLC2 phosphorylation were paralleled by changes in MLC kinase expression without any variation of the phosphatase subunit, PP1. No variation in MLC1 phosphorylation was detectable after denervation or cyclosporin A administration. These results suggest that the low‐frequency neural discharge, typical of soleus, determines low levels of MLC2 phosphorylation together with expression of slow myosin, and that MLC2 phosphorylation is regulated by controlling MLC kinase expression through calcineurin‐independent pathways.


Journal of Chemical Ecology | 2008

Protein Expression Changes in Maize Roots in Response to Humic Substances

Paolo Carletti; Antonio Masi; Barbara Spolaore; Patrizia Polverino de Laureto; Mariangela De Zorzi; Loris Turetta; Massimo Ferretti; Serenella Nardi

Humic substances are known to affect plant metabolism at different levels. We characterized humic substances extracted from earthworm feces by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and used them to treat corn, Zea mays L., seedlings to investigate changes in patterns of root protein expression. After root plasma membrane extraction and purification, proteins were separated by two-dimensional gel electrophoresis, and differential spot intensities were evaluated by image analysis. Finally, 42 differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The majority of them were downregulated by the treatment with humic substances. The proteins identified included malate dehydrogenase, ATPases, cytoskeleton proteins, and different enzymes belonging to the glycolytic/gluconeogenic pathways and sucrose metabolism. The identification of factors involved in plant responses to humic substances may improve our understanding of plant–soil cross-talk, and enable a better management of soil resources.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Fly cryptochrome and the visual system

Gabriella Mazzotta; Alessandro Rossi; Emanuela Leonardi; Moyra Mason; Cristiano Bertolucci; Laura Caccin; Barbara Spolaore; Alberto J. M. Martin; Matthias Schlichting; Rudi Grebler; Charlotte Helfrich-Förster; Stefano Mammi; Rodolfo Costa

Cryptochromes are flavoproteins, structurally and evolutionarily related to photolyases, that are involved in the development, magnetoreception, and temporal organization of a variety of organisms. Drosophila CRYPTOCHROME (dCRY) is involved in light synchronization of the master circadian clock, and its C terminus plays an important role in modulating light sensitivity and activity of the protein. The activation of dCRY by light requires a conformational change, but it has been suggested that activation could be mediated also by specific “regulators” that bind the C terminus of the protein. This C-terminal region harbors several protein–protein interaction motifs, likely relevant for signal transduction regulation. Here, we show that some functional linear motifs are evolutionarily conserved in the C terminus of cryptochromes and that class III PDZ-binding sites are selectively maintained in animals. A coimmunoprecipitation assay followed by mass spectrometry analysis revealed that dCRY interacts with Retinal Degeneration A (RDGA) and with Neither Inactivation Nor Afterpotential C (NINAC) proteins. Both proteins belong to a multiprotein complex (the Signalplex) that includes visual-signaling molecules. Using bioinformatic and molecular approaches, dCRY was found to interact with Neither Inactivation Nor Afterpotential C through Inactivation No Afterpotential D (INAD) in a light-dependent manner and that the CRY–Inactivation No Afterpotential D interaction is mediated by specific domains of the two proteins and involves the CRY C terminus. Moreover, an impairment of the visual behavior was observed in fly mutants for dCRY, indicative of a role, direct or indirect, for this photoreceptor in fly vision.

Collaboration


Dive into the Barbara Spolaore's collaboration.

Top Co-Authors

Avatar

Angelo Fontana

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelo Fontana

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge