Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Stenni is active.

Publication


Featured researches published by Barbara Stenni.


Nature | 2004

Eight glacial cycles from an Antarctic ice core

Laurent Augustin; Carlo Barbante; Piers R F Barnes; Jean Marc Barnola; Matthias Bigler; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Barbara Delmonte; Gabrielle Dreyfus; Gaël Durand; S. Falourd; Hubertus Fischer; Jacqueline Flückiger; M. Hansson; Philippe Huybrechts; Gérard Jugie; Sigfus J Johnsen; Jean Jouzel; Patrik R Kaufmann; Josef Kipfstuhl; Fabrice Lambert; Vladimir Ya. Lipenkov; Geneviève C Littot; Antonio Longinelli; Reginald Lorrain; Valter Maggi; Valérie Masson-Delmotte; Heinz Miller

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Journal of Climate | 2008

A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*

Valerie Masson-Delmotte; Shugui Hou; Alexey Ekaykin; Jean Jouzel; Alberto J. Aristarain; Ronaldo T. Bernardo; David H. Bromwich; Olivier Cattani; Marc Delmotte; S. Falourd; Massimo Frezzotti; L. Genoni; Elisabeth Isaksson; Amaelle Landais; Michiel M. Helsen; Gundula Hoffmann; J. Lopez; Vin Morgan; Hideaki Motoyama; David Noone; H. Oerter; J. R. Petit; A. Royer; Ryu Uemura; Gavin A. Schmidt; Elisabeth Schlosser; Jefferson Cardia Simões; Eric J. Steig; Barbara Stenni; M. Stievenard

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven with a majority of sites located in specific areas of East Antarctica. The database is used to analyze the spatial variations in snow isotopic composition with respect to geographical characteristics (elevation, distance to the coast) and climatic features (temperature, accumulation) and with a focus on deuterium excess. The capacity of theoretical isotopic, regional, and general circulation atmospheric models (including “isotopic” models) to reproduce the observed features and assess the role of moisture advection in spatial deuterium excess fluctuations is analyzed.


Geophysical Research Letters | 2001

A new 27 ky high resolution East Antarctic climate record

Jean Jouzel; V. Masson; Olivier Cattani; S. Falourd; M. Stievenard; Barbara Stenni; Antonio Longinelli; S. J. Johnsen; J. P. Steffenssen; J. R. Petit; Jakob Schwander; Roland Souchez; N. I. Barkov

The ice core recently drilled at the Dome Concordia site on the East Antarctic plateau provides a new high resolution isotope record covering part of the last glacial, the last transition and the Holocene. The two step shape of the deglaciation is remarkably similar for all the ice cores now available on the East Antarctic plateau. The first warming trend ends about 14000 years ago and is followed by the well marked Antarctic Cold Reversal (ACR) with a secondary peak common to all records. During the deglaciation, there are more similarities between the near coastal site of Taylor Dome and inland East Antarctica than between Taylor Dome and central Greenland. However, the results for EPICA do appear to confirm the Taylor Dome timescale after about 14 ka, showing cooling into the ACR roughly in phase between Greenland and Antarctica. While the overall deglacial pattern is asynchronous, this suggests that the now classical picture of a temperature seesaw between Antarctica and Greenland may be too simplistic.


Geochimica et Cosmochimica Acta | 1995

OXYGEN ISOTOPE VARIATIONS OF PHOSPHATE IN MAMMALIAN BONE AND TOOTH ENAMEL

Antonio Delgado Huertas; Paola Iacumin; Barbara Stenni; Begoña Sánchez Chillón; Antonio Longinelli

About eighty specimens from ten different species of mammals, collected from different areas under different climatic and environmental conditions, were measured for the oxygen isotopic composition of their bone and tooth phosphate. The equations relating these values to the mean oxygen isotopic composition of local meteoric water were also derived. The same equation can be used for goats, roe-bucks, and mouflons, despite the biological differences among these species. Measurements were made on about fourty different specimens of rabbit and hare from Europe, Africa, and Canada, but in this case the data obtained clearly show no direct relationship between the oxygen isotopic composition of local meteoric water and the isotopic composition of the skeletal phosphate. However, there seems to be an inverse relationship between the relative humidity of the studied areas and the δ 18O(PO43−) of the skeletal phosphate, thus suggesting the use of fossil bones of these mammal species as recorders of palaeoenvironmental relative humidity. Finally, a new equation was derived for the isotopic scale for horses, on the basis of all the previous data and of a few newly obtained results.


The Holocene | 2004

Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core

Valérie Masson-Delmotte; Barbara Stenni; Jean Jouzel

Measurements of the two water stable isotopes (dD and d18O) along EPICA (European Project for Ice Coring in Antarctica) Dome C ice core are combined with simple isotopic modelling (distillation models) to reconstruct the variability of both the site temperature (East Antarctica) and the moisture source temperature (nowadays probably the subantarctic Indian Ocean). We discuss the difference between the reconstructed site and source temperature pro” les with respect to the initial isotopic data. We show that (i) the early-Holocene optimum appears” rst in Antarctica and 800 years later in the Southern Ocean, and (ii) during the last 5000 years, the site and source temperatures co-vary at the centennial timescale. An 833-year periodicity is observed only on deuterium and site temperature and therefore probably of local origin.


Palaeogeography, Palaeoclimatology, Palaeoecology | 1994

Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation

Begoña Sánchez Chillón; María Teresa Alberdi; Gabriello Leone; Francesco Paolo Bonadonna; Barbara Stenni; Antonio Longinelli

Abstract Variation in the concentration of the stable isotopes of hydrogen, oxygen and carbon have been tested in continental records as tools for quantitative or semi-quantitative paleoclimatological studies. Among the different methods, the potential use of oxygen isotopes in mammal bone and tooth phosphate has recently been recognized. Measurements carried out on fossil mammal bones of Holocene age and their paleoclimatological interpretation corresponded well with paleontological and paleobotanical records. In the case of considerably older fossils, diagenetic processes may change the primary oxygen isotopic composition of phosphate. Fossil horse bones and teeth (principally of the species Equus stenonis) were studied to ascertain how far back in time fossil mammal remains may be considered reliable material for paleoclimatological studies. The samples come from 13 different locations in southeastern Spain, their age ranging from Maspinian (late Pleistocene) to Middle Villafranchian (Pliocene). Apart from the variations of the δ18O(PO43−) values which may be related to climatic changes, it is apparent that the isotopic composition of bones and teeth from the same deposit are frequently rather different from one another. The isotopic differences range from a few tenths of one % to several %. This suggests a strong influence of taphonomy over the measured isotopic values of fossils in each deposit. Time can be considered neither the only variable nor the most important one responsible for the change of the primary isotopic composition of fossils. Under these conditions it is rather difficult to establish lower or upper limits for the age of fossils to be studied for reliable paleoclimatological information since the limits are directly related to taphonomic history. This, in turn, is related to local environmental conditions and not only to the age of fossils.


Earth and Planetary Science Letters | 2004

A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica)

Barbara Stenni; Jean Jouzel; Valérie Masson-Delmotte; Regine Röthlisberger; E. Castellano; Olivier Cattani; S. Falourd; Sigfus J Johnsen; Antonio Longinelli; Julian P. Sachs; Enricomaria Selmo; Roland Souchez; Jørgen Peder Steffensen; Roberto Udisti

The timing and synchronisation of Greenland and Antarctic climate events that occurred during the last glacial period are still under debate, as is the magnitude of temperature change associated with these events. Here we present detailed records of local and moisture-source temperature changes spanning the period 27-45 kyr BP from water stable isotope measurements (deltaD and delta(18)O) in the recently drilled EPICA Dome C ice core, East Antarctic plateau. Using a simple isotopic model, site (DeltaT(site)) and source (DeltaT(source)) temperatures are extracted from the initial 50-yr high-resolution isotopic records, taking into account the changes in seawater isotopic composition. The deuterium isotope variability is very similar to the less precise deltaD record from the Vostok ice core, and the site temperature inversion leads to a temperature profile similar to the classical palaeothermometry method, due to compensations between source and ocean water corrections. The reconstructed DeltaT(site) and DeltaT(source) profiles show different trends during the glacial: the former shows a decreasing trend from the warm Al event (38 kyr BP) toward the Last Glacial Maximum, while the latter shows increasing values from 41 to 28 kyr BP. The low-frequency deuterium excess fluctuations are strongly influenced by obliquity fluctuations, controlling the low- to high-latitude temperature gradients, and show a remarkable similarity with a high-resolution southeast Atlantic sea surface temperature record. A comparison of the temperature profiles (site and source) and temperature gradient (DeltaT(source)-DeltaT(site)) with the non-sea-salt calcium and sodium records suggests a secondary influence of atmospheric transport changes on aerosol variations.


Geophysical Research Letters | 2004

A late medieval warm period in the Southern Ocean as a delayed response to external forcing

Hugues Goosse; Valérie Masson-Delmotte; H. Renssen; Marc Delmotte; Thierry Fichefet; Vin Morgan; Td van Ommen; Boo-Keun Khim; Barbara Stenni

On the basis of long simulations performed with a three-dimensional climate model, we propose an interhemispheric climate lag mechanism, involving the long-term memory of deepwater masses. Warm anomalies, formed in the North Atlantic when warm conditions prevail at surface, are transported by the deep ocean circulation towards the Southern Ocean. There, the heat is released because of large scale upwelling, maintaining warm conditions and inducing a lagged response of about 150 years compared to the Northern Hemisphere. Model results and observations covering the first half of the second millenium suggest a delay between the temperature evolution in the Northern Hemisphere and in the Southern Ocean. The mechanism described here provides a reasonable hypothesis to explain such an interhemipsheric lag.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Abrupt change of Antarctic moisture origin at the end of Termination II

Valerie Masson-Delmotte; Barbara Stenni; Thomas Blunier; O. Cattani; J. Chappellaz; Hai Cheng; G. Dreyfus; R. L. Edwards; S. Falourd; Aline Govin; Kenji Kawamura; Sigfus J Johnsen; J. Jouzel; Amaelle Landais; B. Lemieux-Dudon; A. Lourantou; Gareth J. Marshall; B. Minster; Manfred Mudelsee; K. Pol; Regine Röthlisberger; Enricomaria Selmo; Claire Waelbroeck

The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north–south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO2 overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector.

Collaboration


Dive into the Barbara Stenni's collaboration.

Top Co-Authors

Avatar

Jean Jouzel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Valérie Masson-Delmotte

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Falourd

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Flora

University of Trieste

View shared research outputs
Top Co-Authors

Avatar

Olivier Cattani

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge