Barbora Doušová
Institute of Chemical Technology in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbora Doušová.
Journal of Contaminant Hydrology | 2008
Mattias von Brömssen; Sara Häller Larsson; Prosun Bhattacharya; M. Aziz Hasan; Kazi Matin Ahmed; M. Jakariya; Mohiuddin A. Sikder; Ondra Sracek; Annelie Bivén; Barbora Doušová; Claudio Patriarca; Roger Thunvik; Gunnar Jacks
High arsenic (As) concentrations in groundwater pose a serious threat to the health of millions of people in Bangladesh. Reductive dissolution of Fe(III)-oxyhydroxides and release of its adsorbed As is considered to be the principal mechanism responsible for mobilisation of As. The distribution of As is extremely heterogeneous both laterally and vertically. Groundwater abstracted from oxidised reddish sediments, in contrast to greyish reducing sediments, contains significantly lower amount of dissolved arsenic and can be a source of safe water. In order to study the sustainability of that mitigation option, this study describes the lithofacies and genesis of the sediments within 60 m depth and establishes a relationship between aqueous and solid phase geochemistry. Oxalate extractable Fe and Mn contents are higher in the reduced unit than in the oxidised unit, where Fe and Mn are present in more crystalline mineral phases. Equilibrium modelling of saturation indices suggest that the concentrations of dissolved Fe, Mn and PO(4)(3-)-tot in groundwater is influenced by secondary mineral phases in addition to redox processes. Simulating As(III) adsorption on hydroferric oxides using the Diffuse Layer Model and analytical data gave realistic concentrations of dissolved and adsorbed As(III) for the reducing aquifer and we speculate that the presence of high PO(4)(3-)-tot in combination with reductive dissolution results in the high-As groundwater. The study confirms high mobility of As in reducing aquifers with typically dark colour of sediments found in previous studies and thus validates the approach for location of wells used by local drillers based on sediment colour. A more systematic and standardised colour description and similar studies at more locations are necessary for wider application of the approach.
Clays and Clay Minerals | 2007
Tomáš Grygar; David Hradil; Petr Bezdička; Barbora Doušová; L. Čapek; O. Schneeweiss
Two major species were identified in Fe-treated montmorillonite: monomeric or dimeric hydroxoaqua cations
Journal of Hazardous Materials | 2009
Barbora Doušová; Lucie Fuitová; Tomáš Grygar; Vladimír Machovič; David Koloušek; Lenka Herzogová; Miloslav Lhotka
{\rm{Fe}}({\rm{OH}})_x^{(3 - x) + }
Science of The Total Environment | 2012
Barbora Doušová; Frantisek Buzek; James J. Rothwell; Stanislava Krejcova; Miloslav Lhotka
Fe(OH)x(3−x)+ (form I), and polymeric structures with edge-shared Fe(O,OH)6 (form II). These species have different electron spectra (absorption maximum is 29,600 cm−1 in form I, and 26,000 and 28,000 cm−1 in form II), chemical and thermal stability, and electrochemical behavior. Form I behaves as a partly exchangeable cation in interaction with Cu2+ from Cu-trien solution and Ni2+ from Ni-EDTA, that can be used for selective quantitative analysis. On heating above the dehydration temperature (∼100–150°C) montmorillonite with Fe3+ in form I is converted to a mica-like structure and Fe3+ ions are fixed more strongly in the montmorillonite structure. Form II behaves similarly to hydrous ferric oxides, but its thermal crystallization to hematite is postponed to ∼500–600°C. The Fe3+ cations in the interlayer space are much less thermally stable than Al pillars in pillared interlayered clays (PILCs). Form I is more active in oxidative dehydrogenation of propane, while form II is the active species in sorption of As and the non-specific combustion of propane. To produce only form II by the treatment of montmorillonite with Fe3+, its load must be kept below ∼20 wt.%; otherwise the usual hydrous ferric oxides are formed.
Langmuir | 2016
Jiri Brus; Libor Kobera; Martina Urbanova; Barbora Doušová; Miloslav Lhotka; David Koloušek; Jiří Kotek; Pavel Čuba; Jiri Czernek; Jiří Dědeček
The utilization of low-grade clay materials as selective sorbents represents one of the most effective possibilities of As removal from contaminated water reservoirs. The simple pre-treatment of these materials with Fe (Al, Mn) salts can significantly improve their sorption affinity to As oxyanions. The natural kaolin calcined at 550 degrees C (mostly metakaolin) and raw bentonite (mostly montmorillonite) pre-treated with Fe(II), Fe(III), Al(III) and Mn(II) salts were used to remove of As from the model anoxic groundwater with As(III) concentration about 0.5 and 10 mg L(-1). All the pre-treating methods were appropriate for bentonite; the efficiency of As(III) sorption varied from 92 to >99%, by the sorption capacity higher than 4.5 mg g(-1). In the case of metakaolin, Fe(II)- and Mn(II)-treatments proved the high sorption efficiency (>97%), while only <50% of As was removed after Fe(III) and Al(III) pre-treatment. The sorption capacities of treated metakaolin ranged from 0.1 to 2.0 mg g(-1).
Journal of Hazardous Materials | 2016
Barbora Doušová; Frantisek Buzek; Miloslav Lhotka; Stanislava Krejcova; Radka Boubinova
The sorption of anthropogenically derived arsenic to natural solids plays an important role in the mobility and fate of this toxic metalloid in the environment. The adsorption affinity of dissolved As(V) and As(III) to contrasting natural solids was investigated using model solutions of As(V)/As(III) and homogenized samples of soils, stream sediments and peat cores. The adsorption of As(III) and As(V) on investigated sorbents ran mostly according to the Langmuir model, with high correlation factors (>0.7). Sorption capacities varied from 3.5×10(-3) to 2.0×10(-1) mmol/g of As, whereas As(III) achieved a higher adsorption affinity due to the presence of Fe ions in the model solution. The lower horizons of soils and the intact peat, characterized by high enrichment factors of As content (R>1), represented a more stable system with decreased adsorption/desorption dynamics of As transport. A higher surface activity of solids associated with R<1, and an increased As mobility in the solid-water interface, prevailed in upper horizons of the soil and intact peat, where the contact with atmospheric deposition was expected. Stream sediments proved to be a well-balanced system with R≈1. A strong As-Fe correlation in the natural solids confirmed As affinity to Fe particles.
Clays and Clay Minerals | 2014
Barbora Doušová; Lucie Fuitová; David Koloušek; Miloslav Lhotka; Tomáš Grygar; Petra Spurna
Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.
Journal of Hazardous Materials | 2018
Barbora Doušová; Miloslav Lhotka; Jan Filip; David Koloušek
The stability of soil arsenic during long-term leaching was studied in four soils from an agricultural area. Two identical columns simulating soil profiles of three layers were leached with As-free natural rainwater (<3.10(-3)mgL(-1) As) to test As mobility and the same rainwater enriched with As(V) (2.5mgL(-1) As) for the study of As accumulation. The relative As flow (μgg(-1)day(-1)) showed a comparable run for all soils, with the peak corresponding to maximum As release in the first leaching stage, and then with a tendency to equilibrate. The amount of released As was controlled by the saturated hydraulic conductivity Ksat and free Fe oxides, and the kinetics of the leaching process correlated with the content of organic matter (OM). An overall stability and accumulation of soil arsenic were mostly affected by soil properties (Ksat, particle size, clay fraction), while the chemical composition (Fe, OM content) and surface properties (specific surface area SBET, theoretical adsorption capacity Qt) were of marginal significance. The distribution of As forms was performed by sequential extraction (SEP), which indicated negligible transformation (<12%) of As species in upper soil layers.
Journal of Colloid and Interface Science | 2006
Barbora Doušová; Tomáš Grygar; Alexandr Martaus; Lucie Fuitová; David Koloušek; Vladimír Machovič
The iron chemistry of aluminosilicates can markedly affect their adsorption properties due to possible changes in surface charge upon exposure to a variety of processes in the environment. One of these processes is chemical leaching, but to date little has been reported on the susceptibility of structural Fe to chemical leaching. The purpose of the current study was to determine the effects of solution pH on the stability of structural Fe in kaolinites, illite, and bentonite and the potential for formation of ancillary (oxyhydr)oxides. Structurally bound Fe does not participate in sorption properties but Fe that is released and phase transformed during leaching could take part in adsorption processes and form complexes and/or covalent bonds via Fe ions. Five different Fe-bearing clay minerals were treated in 0.5 M and 2 M HCl, distilled H2O, 0.1MKCl, and 0.5MKHCO3 for 24 h. The amount of Fe leached varied from 10 μg g-1 (for 0.1 M KCl) to 104 μg g-1 (for 2 M HCl) depending on the leaching agents. Acidic and water treatments indicated a relative independence of leached Fe on the initial Fe content in the clay and, conversely, a heavy dependence on the crystallinity of initial Fe phases. Well crystallized Fe(III) was stable during the leaching process, while poorly crystallized and amorphous Fe(III) phases were less stable, forming new ion-exchangeable Fe3+ particles. Under alkaline conditions, no relation between Fe crystallinity and mobility was found. The structural and surface changes resulting from leaching processes were identified by equilibrium adsorption isotherms. In kaolinite, the specific surface area (SBET) and porosity changed independently of Fe leaching due to the stability and crystallinity of Fe. In bentonite, the number of micropores was reduced by their partial saturation with Fe3+ particles caused by poorly crystallized and more reactive Fe forms during the leaching process. Potential phase transformations of Fe were characterized by the voltammetry of microparticles; well crystallized Fe(III) oxides remained stable under leaching conditions, while poorly crystallized and amorphous Fe(III) phases were partially dissolved and transformed to reactive Fe3+ forms.
Geoderma | 2007
Michal Filippi; Barbora Doušová; Vladimír Machovič
Iron impurities in clays degrade the quality in many aspects, but available Fe oxides can significantly improve adsorption affinity of clays to anionic particles. Two natural Fe-rich clays (kaolin and bentonite) were treated in 0.5 M HCl (pH = 1.1) and 0.15 M (COOH)2 (pH = 1.2), and then used to adsorb AsV/SbV oxyanions from model solutions. After acid leaching, the equilibrium sorption capacities (qmax) increased from 2.3 × 10-3 to 39.2 × 10-3 mmol g-1 for AsV and from 2.4 × 10-3 to 40.1 × 10-3 mmol g-1 for SbV, more than doubling the adsorption yields (≈95%) of both oxyanions. Leaching in 0.5 M HCl enhanced both AsV and SbV adsorption, whereas leaching in 0.15 M (COOH)2 mainly improved the adsorption of SbV. Bentonite, which contained fewer crystalline forms of Fe, exhibited better sorption properties for both oxyanions. The leaching of Fe followed first-order kinetics, whereas the adsorption of AsV/SbV followed second-order kinetics. Acid leaching of Fe-rich clays can be used for the preparation of highly selective anionactive sorbents.