Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bardia Askari is active.

Publication


Featured researches published by Bardia Askari.


Circulation Research | 2010

Neuregulin/ErbB Signaling Regulates Cardiac Subtype Specification in Differentiating Human Embryonic Stem Cells

Wei Zhong Zhu; Yiheng Xie; Kara White Moyes; Joseph D. Gold; Bardia Askari; Michael A. Laflamme

Rationale: Human embryonic stem cell–derived cardiomyocytes (hESC-CMs) exhibit either a “working” chamber or a nodal-like phenotype. To generate optimal hESC-CM preparations for eventual clinical application in cell-based therapies, we will need to control their differentiation into these specialized cardiac subtypes. Objective: To demonstrate intact neuregulin (NRG)-1&bgr;/ErbB signaling in hESC-CMs and test the hypothesis that this signaling pathway regulates cardiac subtype abundance in hESC-CM cultures. Methods and Results: All experiments used hESC-CM cultures generated using our recently reported directed differentiation protocol. To support subsequent action potential phenotyping approaches and provide a higher-throughput method of determining cardiac subtype, we first developed and validated a novel genetic label that identifies nodal-type hESC-CMs. Next, control hESC-CM preparations were compared to those differentiated in the presence of exogenous NRG-1&bgr;, an anti–NRG-1&bgr; neutralizing antibody, or the ErbB antagonist AG1478. We used 3 independent approaches to determine the ratio of cardiac subtypes in the resultant populations: direct action potential phenotyping under current-clamp, activation of the aforementioned genetic label, and subtype-specific marker expression by RT-PCR. Using all 3 end points, we found that inhibition of NRG-1&bgr;/ErbB signaling greatly enhanced the proportion of cells showing the nodal phenotype. Conclusions: NRG-1&bgr;/ErbB signaling regulates the ratio of nodal- to working-type cells in differentiating hESC-CM cultures and presumably functions similarly during early human heart development. We speculate that, by manipulating NRG-1&bgr;/ErbB signaling, it will be possible to generate preparations of enriched working-type myocytes for infarct repair, or, conversely, nodal cells for potential use in a biological pacemaker.


Cell Stem Cell | 2009

Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells.

Carol B. Ware; Linlin Wang; Brigham Mecham; Lanlan Shen; Angelique M. Nelson; Merav Bar; Deepak A. Lamba; Derek S. Dauphin; Brian Buckingham; Bardia Askari; Raymond S. Lim; Muneesh Tewari; Stanley M. Gartler; Jean-Pierre Issa; Paul Pavlidis; Zhijun Duan; C. Anthony Blau

Recent evidence indicates that mouse and human embryonic stem cells (ESCs) are fixed at different developmental stages, with the former positioned earlier. We show that a narrow concentration of the naturally occurring short-chain fatty acid, sodium butyrate, supports the extensive self-renewal of mouse and human ESCs, while promoting their convergence toward an intermediate stem cell state. In response to butyrate, human ESCs regress to an earlier developmental stage characterized by a gene expression profile resembling that of mouse ESCs, preventing precocious Xist expression while retaining the ability to form complex teratomas in vivo. Other histone deacetylase inhibitors (HDACi) also support human ESC self-renewal. Our results indicate that HDACi can promote ESC self-renewal across species, and demonstrate that ESCs can toggle between alternative states in response to environmental factors.


Journal of The American Society of Nephrology | 2010

BTBR Ob/Ob Mutant Mice Model Progressive Diabetic Nephropathy

Kelly L. Hudkins; Warangkana Pichaiwong; Tomasz Wietecha; Jolanta Kowalewska; Miriam C. Banas; Min W. Spencer; Anja Mühlfeld; Mariko Koelling; Jeffrey W. Pippin; Stuart J. Shankland; Bardia Askari; Mary E. Rabaglia; Mark P. Keller; Alan D. Attie; Charles E. Alpers

There remains a need for robust mouse models of diabetic nephropathy (DN) that mimic key features of advanced human DN. The recently developed mouse strain BTBR with the ob/ob leptin-deficiency mutation develops severe type 2 diabetes, hypercholesterolemia, elevated triglycerides, and insulin resistance, but the renal phenotype has not been characterized. Here, we show that these obese, diabetic mice rapidly develop morphologic renal lesions characteristic of both early and advanced human DN. BTBR ob/ob mice developed progressive proteinuria beginning at 4 weeks. Glomerular hypertrophy and accumulation of mesangial matrix, characteristic of early DN, were present by 8 weeks, and glomerular lesions similar to those of advanced human DN were present by 20 weeks. By 22 weeks, we observed an approximately 20% increase in basement membrane thickness and a >50% increase in mesangial matrix. Diffuse mesangial sclerosis (focally approaching nodular glomerulosclerosis), focal arteriolar hyalinosis, mesangiolysis, and focal mild interstitial fibrosis were present. Loss of podocytes was present early and persisted. In summary, BTBR ob/ob mice develop a constellation of abnormalities that closely resemble advanced human DN more rapidly than most other murine models, making this strain particularly attractive for testing therapeutic interventions.


Journal of The American Society of Nephrology | 2013

Reversibility of Structural and Functional Damage in a Model of Advanced Diabetic Nephropathy

Warangkana Pichaiwong; Kelly L. Hudkins; Tomasz Wietecha; Tri Q. Nguyen; Chiraporn Tachaudomdach; Wei Li; Bardia Askari; Takahisa Kobayashi; Kevin D. O'Brien; Jeffrey W. Pippin; Stuart J. Shankland; Charles E. Alpers

The reversibility of diabetic nephropathy remains controversial. Here, we tested whether replacing leptin could reverse the advanced diabetic nephropathy modeled by the leptin-deficient BTBR ob/ob mouse. Leptin replacement, but not inhibition of the renin-angiotensin-aldosterone system (RAAS), resulted in near-complete reversal of both structural (mesangial matrix expansion, mesangiolysis, basement membrane thickening, podocyte loss) and functional (proteinuria, accumulation of reactive oxygen species) measures of advanced diabetic nephropathy. Immunohistochemical labeling with the podocyte markers Wilms tumor 1 and p57 identified parietal epithelial cells as a possible source of regenerating podocytes. Thus, the leptin-deficient BTBR ob/ob mouse provides a model of advanced but reversible diabetic nephropathy for further study. These results also suggest that restoration of lost podocytes is possible but is not induced by RAAS inhibition, possibly explaining the limited efficacy of RAAS inhibitors in promoting repair of diabetic nephropathy.


Journal of Lipid Research | 2011

Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

Deidre L. Golej; Bardia Askari; Farah Kramer; Shelley Barnhart; Anuradha Vivekanandan-Giri; Subramaniam Pennathur; Karin E. Bornfeldt

Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall.


Diabetes | 2007

Rosiglitazone Inhibits Acyl-CoA Synthetase Activity and Fatty Acid Partitioning to Diacylglycerol and Triacylglycerol via a Peroxisome Proliferator–Activated Receptor-γ–Independent Mechanism in Human Arterial Smooth Muscle Cells and Macrophages

Bardia Askari; Jenny E. Kanter; Ashley M. Sherrid; Deidre L. Golej; Andrew T. Bender; Joey Liu; Willa A. Hsueh; Joseph A. Beavo; Rosalind A. Coleman; Karin E. Bornfeldt

Rosiglitazone is an insulin-sensitizing agent that has recently been shown to exert beneficial effects on atherosclerosis. In addition to peroxisome proliferator–activated receptor (PPAR)-γ, rosiglitazone can affect other targets, such as directly inhibiting recombinant long-chain acyl-CoA synthetase (ACSL)-4 activity. Because it is unknown if ACSL4 is expressed in vascular cells involved in atherosclerosis, we investigated the ability of rosiglitazone to inhibit ACSL activity and fatty acid partitioning in human and murine arterial smooth muscle cells (SMCs) and macrophages. Human and murine SMCs and human macrophages expressed Acsl4, and rosiglitazone inhibited Acsl activity in these cells. Furthermore, rosiglitazone acutely inhibited partitioning of fatty acids into phospholipids in human SMCs and inhibited fatty acid partitioning into diacylglycerol and triacylglycerol in human SMCs and macrophages through a PPAR-γ–independent mechanism. Conversely, murine macrophages did not express ACSL4, and rosiglitazone did not inhibit ACSL activity in these cells, nor did it affect acute fatty acid partitioning into cellular lipids. Thus, rosiglitazone inhibits ACSL activity and fatty acid partitioning in human and murine SMCs and in human macrophages through a PPAR-γ–independent mechanism likely to be mediated by ACSL4 inhibition. Therefore, rosiglitazone might alter the biological effects of fatty acids in these cells and in atherosclerosis.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS

Shawn Elms; Feng Chen; Yusi Wang; Jin Qian; Bardia Askari; Yanfang Yu; Deepesh Pandey; Jennifer A. Iddings; Ruth B. Caldwell; David Fulton

Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role.


Journal of Biological Chemistry | 2013

Acyl-CoA synthetase 1 is induced by Gram-negative bacteria and lipopolysaccharide and is required for phospholipid turnover in stimulated macrophages.

Katya B. Rubinow; Valerie Z. Wall; Joel D. Nelson; Daniel Mar; Karol Bomsztyk; Bardia Askari; Marvin Lai; Kelly D. Smith; Myoung Sook Han; Anuradha Vivekanandan-Giri; Subramaniam Pennathur; Carolyn J. Albert; David A. Ford; Roger J. Davis; Karin E. Bornfeldt

Background: Acyl-CoA synthetase 1 (ACSL1) promotes inflammatory effects in macrophages, but its regulation and biological role remain largely unknown. Results: Multiple inflammatory pathways contribute to ACSL1 induction, and this induction allows for phospholipid turnover in activated macrophages. Conclusion: The regulation and function of ACSL1 differ substantially in macrophages and insulin target tissues. Significance: These findings indicate a novel role for ACSL1 in innate immunity. The enzyme acyl-CoA synthetase 1 (ACSL1) is induced by peroxisome proliferator-activated receptor α (PPARα) and PPARγ in insulin target tissues, such as skeletal muscle and adipose tissue, and plays an important role in β-oxidation in these tissues. In macrophages, however, ACSL1 mediates inflammatory effects without significant effects on β-oxidation. Thus, the function of ACSL1 varies in different tissues. We therefore investigated the signals and signal transduction pathways resulting in ACSL1 induction in macrophages as well as the consequences of ACSL1 deficiency for phospholipid turnover in LPS-activated macrophages. LPS, Gram-negative bacteria, IFN-γ, and TNFα all induce ACSL1 expression in macrophages, whereas PPAR agonists do not. LPS-induced ACSL1 expression is dependent on Toll-like receptor 4 (TLR4) and its adaptor protein TRIF (Toll-like receptor adaptor molecule 1) but does not require the MyD88 (myeloid differentiation primary response gene 88) arm of TLR4 signaling; nor does it require STAT1 (signal transducer and activator of transcription 1) for maximal induction. Furthermore, ACSL1 deletion attenuates phospholipid turnover in LPS-stimulated macrophages. Thus, the regulation and biological function of ACSL1 in macrophages differ markedly from that in insulin target tissues. These results suggest that ACSL1 may have an important role in the innate immune response. Further, these findings illustrate an interesting paradigm in which the same enzyme, ACSL1, confers distinct biological effects in different cell types, and these disparate functions are paralleled by differences in the pathways that regulate its expression.


Diabetologia | 2003

Oleate, not ligands of the receptor for advanced glycation end-products, promotes proliferation of human arterial smooth muscle cells

Renard Cb; Bardia Askari; L. A. Suzuki; Farah Kramer; Karin E. Bornfeldt

Aims/hypothesisDiabetes accelerates cardiovascular disease caused by atherosclerosis. Accordingly, diabetes accelerates atherosclerotic lesion progression and increases arterial smooth muscle cell proliferation. We hypothesized that diabetes can exert growth-promoting effects on smooth muscle cells via increased advanced glycation end-products or by dyslipidaemia.MethodsPrimary human arterial smooth muscle cells were stimulated with advanced glycation end-products, other ligands of the receptor for advanced glycation end-products or fatty acids common in triglycerides. Cell proliferation was measured as DNA synthesis, cell cycle distribution and cell number. Effects of oleate on cellular phospholipids, diacylglycerol, triglycerides and cholesterol esters were analyzed by thin-layer chromatography, and oleate accumulation into diacylglycerol was confirmed by gas chromatography.ResultsHuman arterial smooth muscle cells express the receptor for advanced glycation end-products, but its ligands Nε-(carboxymethyl)lysine-modified proteins, methylglyoxal-modified proteins, S100B polypeptide and amyloid-β (1–40) peptide, exert no mitogenic action. Instead, oleate, one of the most common fatty acids in triglycerides, enhances platelet-derived growth factor-BB-mediated proliferation and oleate-containing 1,2-diacylglycerol formation in smooth muscle cells. This mitogenic effect of oleate depends on phospholipase D activity and is associated with an increased formation of oleate-enriched 1,2-diacylglycerol.Conclusion/interpretationOleate, not ligands of the receptor for advanced glycation end-products, acts as an enhancer of human smooth muscle cell proliferation. Thus, lipid abnormalities, rather than hyperglycaemia, could be a major factor promoting proliferation of smooth muscle cells in atherosclerotic lesions.


Prostaglandins & Other Lipid Mediators | 2001

Regulation of prostacyclin synthesis by angiotensin II and TNF-α in vascular smooth muscle

Bardia Askari; Nicholas R. Ferrerib

We had previously established that in a model of Ang II-induced hypertension, administration of an anti-TNF-α antibody caused additional increases in mean arterial pressure. Production of vasodilator prostanoids (i.e. PGI2 and PGE2) is increased by Ang II in vascular smooth muscle and is part of a counter-regulatory mechanism that opposes increases in vascular tone. We, therefore, examined the effects of TNF-α on Ang II-induced increases in PGI2 production in vascular smooth muscle cells (VSMC). Addition of Ang II caused an increase in the production of PGI2, while addition of TNF-α had no effect. However, pretreatment with TNF-α potentiated the stimulatory effects of Ang II. The potentiating effect of TNF-α was neither at the level of prostacyclin synthetase nor at the level of acyl hydrolase activity. This potentiation was dependent on tyrosine kinase activity, as preincubation with genistein completely abolished the effect of TNF-α. TNF-α upregulated AA-induced PGI2 synthesis, indicating that the effect of TNF-α is at the level of cyclooxygenase (COX). These data suggest that TNF-α potentiates Ang II-induced synthesis of PGI2 and PGE2 in a tyrosine kinase-dependent manner, an effect that may contribute to the counter-regulatory influence of prostaglandins on the pressor effects of Ang II in the vasculature.

Collaboration


Dive into the Bardia Askari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farah Kramer

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge