Barmak Heshmat
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barmak Heshmat.
Nature Communications | 2015
Genevieve Gariepy; Nikola Krstajić; Robert Henderson; Chunyong Li; Robert R. Thomson; Gerald S. Buller; Barmak Heshmat; Ramesh Raskar; Jonathan Leach; Daniele Faccio
The ability to record images with extreme temporal resolution enables a diverse range of applications, such as fluorescence lifetime imaging, time-of-flight depth imaging and characterization of ultrafast processes. Recently, ultrafast imaging schemes have emerged, which require either long acquisition times or raster scanning and have a requirement for sufficient signal that can only be achieved when light is reflected off an object or diffused by a strongly scattering medium. Here we present a demonstration of the potential of single-photon detector arrays for visualization and rapid characterization of events evolving on picosecond time scales. The single-photon sensitivity, temporal resolution and full-field imaging capability enables the observation of light-in-flight in air, as well as the measurement of laser-induced plasma formation and dynamics in its natural environment. The extreme sensitivity and short acquisition times pave the way for real-time imaging of ultrafast processes or visualization and tracking of objects hidden from view.
Nano Letters | 2012
Barmak Heshmat; Hamid Pahlevaninezhad; Pang Yuanjie; Mostafa Masnadi-Shirazi; Ryan B. Lewis; T. Tiedje; Reuven Gordon; Thomas E. Darcie
Low-temperature (LT) grown GaAs has a subpicosecond carrier response time that makes it favorable for terahertz photoconductive (PC) switching. However, this is obtained at the price of lower mobility and lower thermal conductivity than GaAs. Here we demonstrate subpicosecond carrier sweep-out and over an order of magnitude higher sensitivity in detection from a GaAs-based PC switch by using a nanoplasmonic structure. As compared to a conventional GaAs PC switch, we observe 40 times the peak-to-peak response from the nanoplasmonic structure on GaAs. The response is double that of a commercial, antireflection coated LT-GaAs PC switch.
Nature Communications | 2015
Guy Satat; Barmak Heshmat; Christopher Barsi; Dan Raviv; Ou Chen; Moungi G. Bawendi; Ramesh Raskar
The use of fluorescent probes and the recovery of their lifetimes allow for significant advances in many imaging systems, in particular, medical imaging systems. Here we propose and experimentally demonstrate reconstructing the locations and lifetimes of fluorescent markers hidden behind a turbid layer. This opens the door to various applications for non-invasive diagnosis, analysis, flowmetry and inspection. The method is based on a time-resolved measurement that captures information about both fluorescence lifetime and spatial position of the probes. To reconstruct the scene, the method relies on a sparse optimization framework to invert time-resolved measurements. This wide-angle technique does not rely on coherence, and does not require the probes to be directly in line of sight of the camera, making it potentially suitable for long-range imaging.
Nature Communications | 2016
Albert Redo-Sanchez; Barmak Heshmat; Alireza Aghasi; Salman Naqvi; Mingjie Zhang; Justin K. Romberg; Ramesh Raskar
Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers.
Optics Express | 2010
Hamid Pahlevaninezhad; Thomas E. Darcie; Barmak Heshmat
We present a rigorous theoretical analysis of the two-wire waveguide. Obtaining the attenuation constant in terms of the dimensions of the waveguide analytically, we show that the absorption coefficient can be less than 0.01 cm(-1), with the appropriate values of the dimensions.
Scientific Reports | 2016
Guy Satat; Barmak Heshmat; Dan Raviv; Ramesh Raskar
Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational “All Photons Imaging” (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis.
Optics Express | 2011
Barmak Heshmat; Dan Li; Thomas E. Darcie; Reuven Gordon
We present theory to describe the plasmonic resonances of a subwavelength annular aperture in a real metal plate. The theory provides the reflection, including the amplitude and phase, of radially polarized surface plasmon waves from the end faces of the aperture with a significant departure from the perfect electric conductor case due to plasmonic effects. Oscillations in the reflection amplitude and phase are observed. These oscillations arise from transverse resonances and depend on the geometry of the annulus. The theory is applied to the design of various aperture structures operating at the same resonance wavelength, and it is confirmed by comprehensive electromagnetic simulations. The results are contrasted to the perfect electric conductor case and they will be of significant interest to emerging applications in metamaterials, plasmonic sensors, and near-field optics.
Optics Express | 2011
Barmak Heshmat; Hamid Pahlevaninezhad; Matthew C. Beard; Chris Papadopoulos; Thomas E. Darcie
This paper studies the relation between photoexcitation of a single-walled carbon nanotube (SWNT) based device, and its THz output power in the context of THz photoconductive (PC) switching and THz photomixing. A detailed approach of calculating output THz power for such a device describes the effect of each parameter on the performance of the THz PC switch and highlights the design dependent achievable limits. A numerical assessment, with typical values for each parameter, shows that-subject to thermal stability of the device-SWNT based PC switch can improve the output power by almost two orders of magnitudes compared to conventional materials such as LT-GaAs.
Optics Express | 2011
Hamid Pahlevaninezhad; Barmak Heshmat; Thomas E. Darcie
We present two solutions to the challenge of radiation loss of slot-lines at terahertz frequencies: using a slot-line in a homogeneous medium, and using a slot-line on a layered substrate. A theoretical analysis of the slot-line in a homogeneous medium as a terahertz transmission line is presented. The absorption coefficient is obtained in terms of the waveguide dimensions using the field distribution of the slot-line. Results show that the slot-line in a homogeneous medium and the slot-line on a layered substrate can be effective transmission lines for terahertz waves with 2 cm(-1) and 3 cm(-1) absorption due to conductor loss. Full-wave numerical simulations using the Finite Element Method (FEM) are applied to validate the theory.
IEEE Photonics Journal | 2011
Hamid Pahlevaninezhad; Barmak Heshmat; Thomas E. Darcie
In this paper, we review recent progress toward efficient and versatile devices for terahertz applications. Low-loss transmission lines and waveguides are discussed, as well as potentially high-power photomixing devices based on carbon nanotubes.