Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barnett S. Kramer is active.

Publication


Featured researches published by Barnett S. Kramer.


The New England Journal of Medicine | 2009

Mortality Results from a Randomized Prostate-Cancer Screening Trial

Gerald L. Andriole; E. David Crawford; Robert L. Grubb; Saundra S. Buys; David Chia; Timothy R. Church; Mona N. Fouad; Edward P. Gelmann; Paul A. Kvale; Douglas J. Reding; Joel L. Weissfeld; Lance A. Yokochi; Jonathan D. Clapp; Joshua M. Rathmell; Thomas L. Riley; Richard B. Hayes; Barnett S. Kramer; Anthony B. Miller; Paul F. Pinsky; Philip C. Prorok; John K. Gohagan; Christine D. Berg

BACKGROUND The effect of screening with prostate-specific-antigen (PSA) testing and digital rectal examination on the rate of death from prostate cancer is unknown. This is the first report from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial on prostate-cancer mortality. METHODS From 1993 through 2001, we randomly assigned 76,693 men at 10 U.S. study centers to receive either annual screening (38,343 subjects) or usual care as the control (38,350 subjects). Men in the screening group were offered annual PSA testing for 6 years and digital rectal examination for 4 years. The subjects and health care providers received the results and decided on the type of follow-up evaluation. Usual care sometimes included screening, as some organizations have recommended. The numbers of all cancers and deaths and causes of death were ascertained. RESULTS In the screening group, rates of compliance were 85% for PSA testing and 86% for digital rectal examination. Rates of screening in the control group increased from 40% in the first year to 52% in the sixth year for PSA testing and ranged from 41 to 46% for digital rectal examination. After 7 years of follow-up, the incidence of prostate cancer per 10,000 person-years was 116 (2820 cancers) in the screening group and 95 (2322 cancers) in the control group (rate ratio, 1.22; 95% confidence interval [CI], 1.16 to 1.29). The incidence of death per 10,000 person-years was 2.0 (50 deaths) in the screening group and 1.7 (44 deaths) in the control group (rate ratio, 1.13; 95% CI, 0.75 to 1.70). The data at 10 years were 67% complete and consistent with these overall findings. CONCLUSIONS After 7 to 10 years of follow-up, the rate of death from prostate cancer was very low and did not differ significantly between the two study groups. (ClinicalTrials.gov number, NCT00002540.)


Journal of the National Cancer Institute | 2012

Prostate Cancer Screening in the Randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: Mortality Results after 13 Years of Follow-up

Gerald L. Andriole; E. David Crawford; Robert L. Grubb; Saundra S. Buys; David Chia; Timothy R. Church; Mona N. Fouad; Claudine Isaacs; Paul A. Kvale; Douglas J. Reding; Joel L. Weissfeld; Lance A. Yokochi; Barbara O’Brien; Lawrence R. Ragard; Jonathan D. Clapp; Joshua M. Rathmell; Thomas L. Riley; Ann W. Hsing; Grant Izmirlian; Paul F. Pinsky; Barnett S. Kramer; Anthony B. Miller; John K. Gohagan; Philip C. Prorok

BACKGROUND The prostate component of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial was undertaken to determine whether there is a reduction in prostate cancer mortality from screening using serum prostate-specific antigen (PSA) testing and digital rectal examination (DRE). Mortality after 7-10 years of follow-up has been reported previously. We report extended follow-up to 13 years after the trial. METHODS A total of 76 685 men, aged 55-74 years, were enrolled at 10 screening centers between November 1993 and July 2001 and randomly assigned to the intervention (organized screening of annual PSA testing for 6 years and annual DRE for 4 years; 38 340 men) and control (usual care, which sometimes included opportunistic screening; 38 345 men) arms. Screening was completed in October 2006. All incident prostate cancers and deaths from prostate cancer through 13 years of follow-up or through December 31, 2009, were ascertained. Relative risks (RRs) were estimated as the ratio of observed rates in the intervention and control arms, and 95% confidence intervals (CIs) were calculated assuming a Poisson distribution for the number of events. Poisson regression modeling was used to examine the interactions with respect to prostate cancer mortality between trial arm and age, comorbidity status, and pretrial PSA testing. All statistical tests were two-sided. RESULTS Approximately 92% of the study participants were followed to 10 years and 57% to 13 years. At 13 years, 4250 participants had been diagnosed with prostate cancer in the intervention arm compared with 3815 in the control arm. Cumulative incidence rates for prostate cancer in the intervention and control arms were 108.4 and 97.1 per 10 000 person-years, respectively, resulting in a relative increase of 12% in the intervention arm (RR = 1.12, 95% CI = 1.07 to 1.17). After 13 years of follow-up, the cumulative mortality rates from prostate cancer in the intervention and control arms were 3.7 and 3.4 deaths per 10 000 person-years, respectively, resulting in a non-statistically significant difference between the two arms (RR = 1.09, 95% CI = 0.87 to 1.36). No statistically significant interactions with respect to prostate cancer mortality were observed between trial arm and age (P(interaction) = .81), pretrial PSA testing (P(interaction) = .52), and comorbidity (P(interaction) = .68). CONCLUSIONS After 13 years of follow-up, there was no evidence of a mortality benefit for organized annual screening in the PLCO trial compared with opportunistic screening, which forms part of usual care, and there was no apparent interaction with age, baseline comorbidity, or pretrial PSA testing.


JAMA | 2011

Effect of Screening on Ovarian Cancer Mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial

Saundra S. Buys; Edward E. Partridge; Amanda Black; Christine Cole Johnson; Lois Lamerato; Claudine Isaacs; Douglas J. Reding; Robert T. Greenlee; Lance A. Yokochi; Bruce Kessel; E. David Crawford; Timothy R. Church; Gerald L. Andriole; Joel L. Weissfeld; Mona N. Fouad; David Chia; Barbara O'Brien; Lawrence R. Ragard; Jonathan D. Clapp; Joshua M. Rathmell; Thomas L. Riley; Patricia Hartge; Paul F. Pinsky; Claire Zhu; Grant Izmirlian; Barnett S. Kramer; Anthony B. Miller; Jian Lun Xu; Philip C. Prorok; John K. Gohagan

CONTEXT Screening for ovarian cancer with cancer antigen 125 (CA-125) and transvaginal ultrasound has an unknown effect on mortality. OBJECTIVE To evaluate the effect of screening for ovarian cancer on mortality in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. DESIGN, SETTING, AND PARTICIPANTS Randomized controlled trial of 78,216 women aged 55 to 74 years assigned to undergo either annual screening (n = 39,105) or usual care (n = 39,111) at 10 screening centers across the United States between November 1993 and July 2001. Intervention The intervention group was offered annual screening with CA-125 for 6 years and transvaginal ultrasound for 4 years. Participants and their health care practitioners received the screening test results and managed evaluation of abnormal results. The usual care group was not offered annual screening with CA-125 for 6 years or transvaginal ultrasound but received their usual medical care. Participants were followed up for a maximum of 13 years (median [range], 12.4 years [10.9-13.0 years]) for cancer diagnoses and death until February 28, 2010. MAIN OUTCOME MEASURES Mortality from ovarian cancer, including primary peritoneal and fallopian tube cancers. Secondary outcomes included ovarian cancer incidence and complications associated with screening examinations and diagnostic procedures. RESULTS Ovarian cancer was diagnosed in 212 women (5.7 per 10,000 person-years) in the intervention group and 176 (4.7 per 10,000 person-years) in the usual care group (rate ratio [RR], 1.21; 95% confidence interval [CI], 0.99-1.48). There were 118 deaths caused by ovarian cancer (3.1 per 10,000 person-years) in the intervention group and 100 deaths (2.6 per 10,000 person-years) in the usual care group (mortality RR, 1.18; 95% CI, 0.82-1.71). Of 3285 women with false-positive results, 1080 underwent surgical follow-up; of whom, 163 women experienced at least 1 serious complication (15%). There were 2924 deaths due to other causes (excluding ovarian, colorectal, and lung cancer) (76.6 per 10,000 person-years) in the intervention group and 2914 deaths (76.2 per 10,000 person-years) in the usual care group (RR, 1.01; 95% CI, 0.96-1.06). CONCLUSIONS Among women in the general US population, simultaneous screening with CA-125 and transvaginal ultrasound compared with usual care did not reduce ovarian cancer mortality. Diagnostic evaluation following a false-positive screening test result was associated with complications. Trial Registration clinicaltrials.gov Identifier: NCT00002540.


The New England Journal of Medicine | 2012

Colorectal-Cancer Incidence and Mortality with Screening Flexible Sigmoidoscopy

Robert E. Schoen; Paul F. Pinsky; Joel L. Weissfeld; Lance A. Yokochi; Timothy R. Church; Adeyinka O. Laiyemo; Robert S. Bresalier; Gerald L. Andriole; Saundra S. Buys; E. David Crawford; Mona N. Fouad; Claudine Isaacs; Christine Cole Johnson; Douglas J. Reding; Barbara O'Brien; Danielle M. Carrick; Patrick Wright; Thomas L. Riley; Mark P. Purdue; Grant Izmirlian; Barnett S. Kramer; Anthony B. Miller; John K. Gohagan; Philip C. Prorok; Christine D. Berg

BACKGROUND The benefits of endoscopic testing for colorectal-cancer screening are uncertain. We evaluated the effect of screening with flexible sigmoidoscopy on colorectal-cancer incidence and mortality. METHODS From 1993 through 2001, we randomly assigned 154,900 men and women 55 to 74 years of age either to screening with flexible sigmoidoscopy, with a repeat screening at 3 or 5 years, or to usual care. Cases of colorectal cancer and deaths from the disease were ascertained. RESULTS Of the 77,445 participants randomly assigned to screening (intervention group), 83.5% underwent baseline flexible sigmoidoscopy and 54.0% were screened at 3 or 5 years. The incidence of colorectal cancer after a median follow-up of 11.9 years was 11.9 cases per 10,000 person-years in the intervention group (1012 cases), as compared with 15.2 cases per 10,000 person-years in the usual-care group (1287 cases), which represents a 21% reduction (relative risk, 0.79; 95% confidence interval [CI], 0.72 to 0.85; P<0.001). Significant reductions were observed in the incidence of both distal colorectal cancer (479 cases in the intervention group vs. 669 cases in the usual-care group; relative risk, 0.71; 95% CI, 0.64 to 0.80; P<0.001) and proximal colorectal cancer (512 cases vs. 595 cases; relative risk, 0.86; 95% CI, 0.76 to 0.97; P=0.01). There were 2.9 deaths from colorectal cancer per 10,000 person-years in the intervention group (252 deaths), as compared with 3.9 per 10,000 person-years in the usual-care group (341 deaths), which represents a 26% reduction (relative risk, 0.74; 95% CI, 0.63 to 0.87; P<0.001). Mortality from distal colorectal cancer was reduced by 50% (87 deaths in the intervention group vs. 175 in the usual-care group; relative risk, 0.50; 95% CI, 0.38 to 0.64; P<0.001); mortality from proximal colorectal cancer was unaffected (143 and 147 deaths, respectively; relative risk, 0.97; 95% CI, 0.77 to 1.22; P=0.81). CONCLUSIONS Screening with flexible sigmoidoscopy was associated with a significant decrease in colorectal-cancer incidence (in both the distal and proximal colon) and mortality (distal colon only). (Funded by the National Cancer Institute; PLCO ClinicalTrials.gov number, NCT00002540.).


Controlled Clinical Trials | 2000

The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status.

John K. Gohagan; Philip C. Prorok; Richard B. Hayes; Barnett S. Kramer

The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial is enrolling 148,000 men and women ages 55-74 at ten screening centers nationwide with balanced randomization to intervention and control arms. For prostate cancer, men receive a digital rectal examination and a blood test for prostate-specific antigen. For lung cancer, men and women receive a posteroanterior view chest X-ray. For colorectal cancer, men and women undergo a 60-cm flexible sigmoidoscopy. For ovarian cancer, women receive a blood test for the CA125 tumor marker and transvaginal ultrasound. Members of the control arm continue with their usual care. Follow-up in both groups will continue for at least 13 years from randomization to assess health status and cause of death. The primary endpoint is mortality from the four PLCO cancers, which accounts for about 53% of all cancer deaths in men and 41% of cancer deaths in women in the United States each year. Blood specimens are collected from screened participants, buccal cell DNA from controls, and histology slides from cases; these are maintained in a biorepository. Participants complete a baseline questionnaire (covering health status and risk factors) and a dietary questionnaire. More than 12,000 participants were enrolled in the pilot phase (concluded in September 1994). Changes in the eligibility criteria followed. As of April 2000, enrollment exceeded 144,500. Data are scanned into designated on-site computers for uploading by participant identification number to the coordinating center for quality checks, archival storage, and preparation of analysis datasets for use by the National Cancer Institute (NCI). Scientific direction is provided by NCI scientists, trial investigators, external consultants, and an independent data safety and monitoring board. Performance and data quality are monitored via data edits, site visits, random record audits, and teleconferences. The PLCO trial is formally endorsed by the American Cancer Society and has been ranked by the American Urological Association as one of the most important prostate cancer studies being conducted. Special efforts to enroll black participants are cosponsored by the U.S. Centers for Disease Control and Prevention.


JAMA | 2011

Screening by chest radiograph and lung cancer mortality: The Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial

Martin M. Oken; Willam G. Hocking; Paul A. Kvale; Gerald L. Andriole; Saundra S. Buys; Timothy R. Church; E. David Crawford; Mona N. Fouad; Claudine Isaacs; Douglas J. Reding; Joel L. Weissfeld; Lance A. Yokochi; Barbara O’Brien; Lawrence R. Ragard; Joshua M. Rathmell; Thomas L. Riley; Patrick Wright; Neil Caparaso; Ping Hu; Grant Izmirlian; Paul F. Pinsky; Philip C. Prorok; Barnett S. Kramer; Anthony B. Miller; John K. Gohagan; Christine D. Berg

CONTEXT The effect on mortality of screening for lung cancer with modern chest radiographs is unknown. OBJECTIVE To evaluate the effect on mortality of screening for lung cancer using radiographs in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. DESIGN, SETTING, AND PARTICIPANTS Randomized controlled trial that involved 154,901 participants aged 55 through 74 years, 77,445 of whom were assigned to annual screenings and 77,456 to usual care at 1 of 10 screening centers across the United States between November 1993 and July 2001. The data from a subset of eligible participants for the National Lung Screening Trial (NLST), which compared chest radiograph with spiral computed tomographic (CT) screening, were analyzed. INTERVENTION Participants in the intervention group were offered annual posteroanterior view chest radiograph for 4 years. Diagnostic follow-up of positive screening results was determined by participants and their health care practitioners. Participants in the usual care group were offered no interventions and received their usual medical care. All diagnosed cancers, deaths, and causes of death were ascertained through the earlier of 13 years of follow-up or until December 31, 2009. MAIN OUTCOME MEASURES Mortality from lung cancer. Secondary outcomes included lung cancer incidence, complications associated with diagnostic procedures, and all-cause mortality. RESULTS Screening adherence was 86.6% at baseline and 79% to 84% at years 1 through 3; the rate of screening use in the usual care group was 11%. Cumulative lung cancer incidence rates through 13 years of follow-up were 20.1 per 10,000 person-years in the intervention group and 19.2 per 10,000 person-years in the usual care group (rate ratio [RR]; 1.05, 95% CI, 0.98-1.12). A total of 1213 lung cancer deaths were observed in the intervention group compared with 1230 in usual care group through 13 years (mortality RR, 0.99; 95% CI, 0.87-1.22). Stage and histology were similar between the 2 groups. The RR of mortality for the subset of participants eligible for the NLST, over the same 6-year follow-up period, was 0.94 (95% CI, 0.81-1.10). CONCLUSION Annual screening with chest radiograph did not reduce lung cancer mortality compared with usual care. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00002540.


JAMA Internal Medicine | 2014

Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer

Edward F. Patz; Paul F. Pinsky; Constantine Gatsonis; JoRean D. Sicks; Barnett S. Kramer; Martin C. Tammemagi; Caroline Chiles; William C. Black; Denise R. Aberle

IMPORTANCE Screening for lung cancer has the potential to reduce mortality, but in addition to detecting aggressive tumors, screening will also detect indolent tumors that otherwise may not cause clinical symptoms. These overdiagnosis cases represent an important potential harm of screening because they incur additional cost, anxiety, and morbidity associated with cancer treatment. OBJECTIVE To estimate overdiagnosis in the National Lung Screening Trial (NLST). DESIGN, SETTING, AND PARTICIPANTS We used data from the NLST, a randomized trial comparing screening using low-dose computed tomography (LDCT) vs chest radiography (CXR) among 53 452 persons at high risk for lung cancer observed for 6.4 years, to estimate the excess number of lung cancers in the LDCT arm of the NLST compared with the CXR arm. MAIN OUTCOMES AND MEASURES We calculated 2 measures of overdiagnosis: the probability that a lung cancer detected by screening with LDCT is an overdiagnosis (PS), defined as the excess lung cancers detected by LDCT divided by all lung cancers detected by screening in the LDCT arm; and the number of cases that were considered overdiagnosis relative to the number of persons needed to screen to prevent 1 death from lung cancer. RESULTS During follow-up, 1089 lung cancers were reported in the LDCT arm and 969 in the CXR arm of the NLST. The probability is 18.5% (95% CI, 5.4%-30.6%) that any lung cancer detected by screening with LDCT was an overdiagnosis, 22.5% (95% CI, 9.7%-34.3%) that a non-small cell lung cancer detected by LDCT was an overdiagnosis, and 78.9% (95% CI, 62.2%-93.5%) that a bronchioalveolar lung cancer detected by LDCT was an overdiagnosis. The number of cases of overdiagnosis found among the 320 participants who would need to be screened in the NLST to prevent 1 death from lung cancer was 1.38. CONCLUSIONS AND RELEVANCE More than 18% of all lung cancers detected by LDCT in the NLST seem to be indolent, and overdiagnosis should be considered when describing the risks of LDCT screening for lung cancer.


Lancet Oncology | 2001

Trends in biomarker research for cancer detection

Pothur R. Srinivas; Barnett S. Kramer; Sudhir Srivastava

A key challenge in cancer control and prevention is detection of the disease as early as possible, enabling effective interventions and therapies to contribute to reduction in mortality and morbidity. Biomarkers are important as molecular signposts of the physiological state of a cell at a specific time. Active genes, their respective protein products, and other organic chemicals made by the cell create these signposts. As a normal cell progresses through the complex process of transformation to a cancerous state, biomarkers could prove vital for the identification of early cancer and people at risk of developing cancer. We discuss current research into the genetic and molecular signatures of cells, including microsatellite instability, hypermethylation and single-nucleotide polymorphisms. The use of genomic and proteomic high-throughput technology platforms to facilitate detection of early cancer by means of biomarkers, and issues on the analysis, validation, and predictive value of biomarkers based on these technologies are also discussed. We report on recent advances in identifying sources of biomarkers that can be accessed by noninvasive techniques, such as buccal-cell isolates, as well as traditional sources such as serum or plasma. We also focus on the work of the Early Detection Research Network at the National Cancer Institute, harnessing expertise from leading national and international institutions, to identify and validate biomarkers for the detection of precancerous and cancerous cells in assessing risk of cancer. The network also has a role in linking discovery to process development, resulting in early detection tests and clinical assessment.


Journal of Clinical Oncology | 2009

American society of clinical oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction.

Kala Visvanathan; Rowan T. Chlebowski; Patricia Hurley; Nananda F. Col; Mary Ropka; Deborah Collyar; Monica Morrow; Carolyn D. Runowicz; Kathleen I. Pritchard; Karen L. Hagerty; Banu Arun; Judy Garber; Victor G. Vogel; James L. Wade; Powel H. Brown; Jack Cuzick; Barnett S. Kramer; Scott M. Lippman

PURPOSE To update the 2002 American Society of Clinical Oncology guideline on pharmacologic interventions for breast cancer (BC) risk reduction. METHODS A literature search identified relevant randomized trials published since 2002. Primary outcome of interest was BC incidence (invasive and noninvasive). Secondary outcomes included BC mortality, adverse events, and net health benefits. An expert panel reviewed the literature and developed updated consensus guidelines. Results Seventeen articles met inclusion criteria. In premenopausal women, tamoxifen for 5 years reduces the risk of BC for at least 10 years, particularly estrogen receptor (ER) -positive invasive tumors. Women < or = 50 years of age experience fewer serious side effects. Vascular and vasomotor events do not persist post-treatment across all ages. In postmenopausal women, raloxifene and tamoxifen reduce the risk of ER-positive invasive BC with equal efficacy. Raloxifene is associated with a lower risk of thromboembolic disease, benign uterine conditions, and cataracts than tamoxifen in postmenopausal women. No evidence exists establishing whether a reduction in BC risk from either agent translates into reduced BC mortality. Recommendations In women at increased risk for BC, tamoxifen (20 mg/d for 5 years) may be offered to reduce the risk of invasive ER-positive BC, with benefits for at least 10 years. In postmenopausal women, raloxifene (60 mg/d for 5 years) may also be considered. Use of aromatase inhibitors, fenretinide, or other selective estrogen receptor modulators to lower BC risk is not recommended outside of a clinical trial. Discussion of risks and benefits of preventive agents by health providers is critical to patient decision making.


Journal of Clinical Oncology | 2013

Use of Pharmacologic Interventions for Breast Cancer Risk Reduction: American Society of Clinical Oncology Clinical Practice Guideline

Kala Visvanathan; Patricia Hurley; Elissa T. Bantug; Powel H. Brown; Nananda F. Col; Jack Cuzick; Nancy E. Davidson; Andrea Decensi; Carol J. Fabian; Leslie G. Ford; Judy Garber; Maria C. Katapodi; Barnett S. Kramer; Monica Morrow; Barbara A. Parker; Carolyn D. Runowicz; Victor G. Vogel; James L. Wade; Scott M. Lippman

PURPOSE To update the 2009 American Society of Clinical Oncology guideline on pharmacologic interventions for breast cancer (BC) risk reduction. METHODS A systematic review of randomized controlled trials and meta-analyses published from June 2007 through June 2012 was completed using MEDLINE and Cochrane Collaboration Library. Primary outcome of interest was BC incidence (invasive and noninvasive). Secondary outcomes included BC mortality, adverse events, and net health benefits. Guideline recommendations were revised based on an Update Committees review of the literature. RESULTS Nineteen articles met the selection criteria. Six chemoprevention agents were identified: tamoxifen, raloxifene, arzoxifene, lasofoxifene, exemestane, and anastrozole. RECOMMENDATIONS In women at increased risk of BC age ≥ 35 years, tamoxifen (20 mg per day for 5 years) should be discussed as an option to reduce the risk of estrogen receptor (ER) -positive BC. In postmenopausal women, raloxifene (60 mg per day for 5 years) and exemestane (25 mg per day for 5 years) should also be discussed as options for BC risk reduction. Those at increased BC risk are defined as individuals with a 5-year projected absolute risk of BC ≥ 1.66% (based on the National Cancer Institute BC Risk Assessment Tool or an equivalent measure) or women diagnosed with lobular carcinoma in situ. Use of other selective ER modulators or other aromatase inhibitors to lower BC risk is not recommended outside of a clinical trial. Health care providers are encouraged to discuss the option of chemoprevention among women at increased BC risk. The discussion should include the specific risks and benefits associated with each chemopreventive agent.

Collaboration


Dive into the Barnett S. Kramer's collaboration.

Top Co-Authors

Avatar

Stuart G. Baker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Philip C. Prorok

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul F. Pinsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John K. Gohagan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald L. Andriole

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard M. Fagerstrom

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge