Barrett R. Harvey
University of Texas Health Science Center at Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barrett R. Harvey.
Nature Biotechnology | 2001
Gang Chen; Andrew Hayhurst; Jeffery G. Thomas; Barrett R. Harvey; Brent L. Iverson; George Georgiou
Periplasmic expression with cytometric screening (PECS) is a powerful and rapid “display-less” technology for isolating ligand-binding proteins from diverse libraries. Escherichia coli expressing a library of proteins secreted into the periplasmic space are incubated with a fluorescent conjugate of the target ligand. Under the proper conditions, ligands as large as about 10 kDa can equilibrate within the periplasmic space without compromising the cells integrity or viability. The bacterial cell envelope effectively serves as a dialysis bag to selectively retain receptor–fluorescent probe complexes but not free ligand. Cells displaying increased fluorescence are then isolated by flow cytometry. We demonstrate that scFv antibodies with both very high and low affinity to digoxigenin can be isolated from libraries screened by PECS using a benchtop flow cytometer. We also show that preexisting libraries constructed for display on filamentous bacteriophage can be screened by PECS without the need for subcloning. In fact, PECS was found to select for proteins that could be missed by conventional phage panning and screening methods.
Infection and Immunity | 2005
Abhineet S. Sheoran; Susan Chapman-Bonofiglio; Barrett R. Harvey; Jean Mukherjee; George Georgiou; Arthur Donohue-Rolfe; Saul Tzipori
ABSTRACT Infection of children with Shiga toxin (Stx)-producing Escherichia coli (STEC) can lead to hemolytic-uremic syndrome (HUS) in 5 to 10% of patients. Stx2, one of two toxins liberated by the bacterium, is directly linked with HUS. We have previously shown that Stx-specific human monoclonal antibodies protect STEC-infected animals from fatal systemic complications. The present study defines the protective antibody dose in relation to the time of treatment after the onset of diarrhea in infected gnotobiotic piglets. Using the mouse toxicity model, we selected 5C12, an antibody specific for the A subunit, as the most effective Stx2 antibody for further characterization in the piglet model in which piglets developed diarrhea 16 to 40 h after bacterial challenge, followed by fatal neurological symptoms at 48 to 96 h. Seven groups of piglets received doses of 5C12 ranging from 6.0 mg/kg to 0.05 mg/kg of body weight, administered parenterally 48 h after bacterial challenge. The minimum fully protective antibody dose was 0.4 mg/kg, and the corresponding serum antibody concentration in these piglets was 0.7 μg (±0.5)/ml, measured 7 to 14 days after administration. Of 40 infected animals which received Stx2 antibody treatment of ≥0.4 mg/kg, 34 (85%) survived, while only 1 (2.5%) of 39 placebo-treated animals survived. We conclude that the administration of the Stx2-specific antibody was protective against fatal systemic complications even when it was administered well after the onset of diarrhea. These findings suggest that children treated with this antibody, even after the onset of bloody diarrhea, may be equally protected against the risk of developing HUS.
Human antibodies | 2010
Tim Ebert; Sharon Smith; Greg Pancari; Desmond J. Clark; Richard Hampton; Susan Secore; Victoria Towne; Hongxia Fan; Xin Min Wang; Xiaoqing Wu; Robin Ernst; Barrett R. Harvey; Adam C. Finnefrock; Fubao Wang; Charles Y. Tan; Eberhard Durr; Leslie Cope; Annaliesa S. Anderson; Zhiqiang An; Tessie McNeely
A fully human monoclonal antibody (CS-D7, IgG1) specific for the iron regulated surface determinant B (IsdB) of Staphylococcus aureus was isolated from the Cambridge Antibody Technology (CAT) scFv antibody library. As compared to previously described IsdB specific murine monoclonals, CS-D7 has a unique, non-overlapping binding site on IsdB, and exhibits increased in vivo activity. The antibody recognizes a conformational epitope spanning amino acids 50 to 285 and has a binding affinity of 340 (± 75) pM for IsdB. CS-D7 bound to a wide variety of S. aureus strains, but not to an isdB deletion mutant. The antibody mediated opsonophagocytic (OP) killing in vitro and mediated significant protection in vivo. In a murine lethal sepsis model, the antibody conferred protection from death when dosed prior to challenge, but not when dosed after challenge. Importantly, in a central venous catheter (CVC) model in rats, the antibody reduced bacteremia and prevented colonization of indwelling catheters. Protection was observed when rats were dosed with CS-D7 prior to challenge as well as post challenge. IsdB is currently being investigated for clinical efficacy against S. aureus infection, and the activity of this human IsdB specific antibody supplements the growing body of evidence to support targeting this antigen for vaccine development.
Journal of Bacteriology | 2010
Peng Gao; Kenneth L. Pinkston; Sreedhar R. Nallapareddy; Ambro van Hoof; Barbara E. Murray; Barrett R. Harvey
Pili in Gram-positive bacteria play a major role in the colonization of host tissue and in the development of biofilms. They are promising candidates for vaccines or drug targets since they are highly immunogenic and share common structural and functional features among various Gram-positive pathogens. Numerous publications have helped build a detailed understanding of pilus surface assembly, yet regulation of pilin gene expression has not been well defined. Utilizing a monoclonal antibody developed against the Enterococcus faecalis major pilus protein EbpC, we identified mutants from a transposon (Tn) insertion library which lack surface-exposed Ebp pili. In addition to insertions in the ebp regulon, an insertion in ef1184 (dapA) significantly reduced levels of EbpC. Analysis of in-frame dapA deletion mutants and mutants with the downstream gene rnjB deleted further demonstrated that rnjB was responsible for the deficiency of EbpC. Sequence analysis revealed that rnjB encodes a putative RNase J2. Subsequent quantitative real-time PCR (qRT-PCR) and Northern blotting demonstrated that the ebpABC mRNA transcript level was significantly decreased in the rnjB deletion mutant. In addition, using a reporter gene assay, we confirmed that rnjB affects the expression of the ebpABC operon. Functionally, the rnjB deletion mutant was attenuated in its ability to produce biofilm, similar to that of an ebpABC deletion mutant which lacks Ebp pili. Together, these results demonstrate the involvement of rnjB in E. faecalis pilin gene expression and provide insight into a novel mechanism of regulation of pilus production in Gram-positive pathogens.
Journal of Bacteriology | 2011
Kenneth L. Pinkston; Peng Gao; Daniel Diaz-Garcia; Jouko Sillanpää; Sreedhar R. Nallapareddy; Barbara E. Murray; Barrett R. Harvey
Ace, a known virulence factor and the first identified microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Enterococcus faecalisis associated with host cell adherence and endocarditis. The Fsr quorum-sensing system of E. faecalis, a two-component signal transduction system, has also been repeatedly linked to virulence in E. faecalis, due in part to the transcriptional induction of an extracellular metalloprotease, gelatinase (GelE). In this study, we discovered that disruption of the Fsr pathway significantly increased the levels of Ace on the cell surface in the latter phases of growth. Furthermore, we observed that, in addition to fsrB mutants, other strains identified as deficient in GelE activity also demonstrated a similar phenotype. Additional experiments demonstrated the GelE-dependent cleavage of Ace from the surface of E. faecalis, confirming that GelE specifically reduces Ace cell surface display. In addition, disruption of the Fsr system or GelE expression significantly improved the ability of E. faecalis to adhere to collagen, which is consistent with higher levels of Ace on the E. faecalis surface. These results demonstrate that the display of Ace is mediated by quorum sensing through the action of GelE, providing insight into the complicated world of Gram-positive pathogen adhesion and colonization.
The Journal of Nuclear Medicine | 2012
Mary A. Hall; Kenneth L. Pinkston; Nathaniel Wilganowski; Holly Robinson; Pradip Ghosh; Ali Azhdarinia; Karina Vazquez-Arreguin; Arseniy M. Kolonin; Barrett R. Harvey; Eva M. Sevick-Muraca
The proliferation of most carcinomas is associated with an overexpression of epithelial cell adhesion molecule (EpCAM), a 40-kDa type I transmembrane protein found on epithelial cells yet absent from other cell types. The absence of EpCAM in normal lymphatics makes it an attractive marker for studying lymph node (LN) metastases of carcinomas to improve LN staging accuracy. Herein, we developed and quantitatively compared dual-labeled monoclonal antibodies (mAbs) of varying affinities against EpCAM for both noninvasive and intraoperative detection of metastatic LNs in prostate cancer. Methods: A panel of hybridoma-derived anti-EpCAM mAbs was generated and screened. Two high-affinity candidate mAbs with specificity for nonoverlapping epitopes on the EpCAM extracellular domain were chosen for further evaluation. After conjugation with DOTA for 64Cu radiolabeling and IRDye 800CW as a fluorophore, dual-labeled specific or isotype control mAb was administered intravenously to male nu/nu mice at 10–12 wk after orthotopic implantation of DsRed-expressing PC3 cells. Within 18–24 h, noninvasive small-animal PET/CT and in vivo, in situ, and ex vivo DsRed reporter gene and near-infrared fluorescence (NIRF) imaging were performed to detect primary tumors and metastatic LNs. Using DsRed fluorescence as the true indicator of cancer-positive tissue, we performed receiver operating characteristic curve analyses of percentage injected dose per gram measured from quantitative small-animal PET/CT and fluorescence intensity measured from semiquantitative NIRF imaging for each LN examined to compare mAb sensitivity and specificity. Results: mAbs 7 and 153 generated in-house were found to have higher affinity than commercial mAb 9601. Accuracy, as a function of sensitivity and specificity, for the detection of cancer-positive LNs during in vivo small-animal PET/CT was highest for mAbs 7 (87.0%) and 153 (78.0%) and significantly greater (P < 0.001) than random chance (50.0%). Rates for mAb 9601 (60.7%) and control mAb 69 (27.0%) were not significantly different from chance. Similarly, mAb 7 had significant detection accuracy by NIRF imaging (96.0%, P < 0.001). Conclusion: mAbs 7 and 153 are attractive, high-affinity candidates for further multimodal imaging agent optimization aimed at enhancing sensitivity and specificity for detection of metastatic LNs in prostate cancer. Fully quantitative NIRF imaging is needed for comprehensive analyses of NIRF-labeled agent accuracy for intraoperative guidance.
Journal of Medicinal Chemistry | 2013
Sukhen C. Ghosh; Pradip Ghosh; Nathaniel Wilganowski; Holly Robinson; Mary A. Hall; Gabriel S. Dickinson; Ken Pinkston; Barrett R. Harvey; Eva M. Sevick-Muraca; Ali Azhdarinia
Dual-labeled compounds containing nuclear and near-infrared fluorescence contrast have the potential to molecularly guide surgical resection of cancer by extending whole-body diagnostic imaging findings into the surgical suite. To simplify the dual labeling process for antibody-based agents, we designed a multimodality chelation (MMC) scaffold which combined a radiometal chelating agent and fluorescent dye into a single moiety. Three dye-derivatized MMC compounds were synthesized and radiolabeled. The IRDye 800CW conjugate, 4, had favorable optical properties and showed rapid clearance in vivo. Using 4, an epithelial cell adhesion molecule (EpCAM) targeting MMC-immunoconjugate was prepared and dual-labeled with (64)Cu. In vitro binding activity was confirmed after MMC conjugation. Multimodal imaging studies showed higher tumor accumulation of (64)Cu-7 compared to nontargeted (64)Cu-4 in a prostate cancer model. Further evaluation in different EpCAM-expressing cell lines is warranted as well as application of the MMC dual labeling approach with other monoclonal antibodies.
PLOS ONE | 2013
Jouko Sillanpää; Chungyu Chang; Kavindra V. Singh; Maria Camila Montealegre; Sreedhar R. Nallapareddy; Barrett R. Harvey; Hung Ton-That; Barbara E. Murray
The endocarditis and biofilm-associated pilus (Ebp) operon is a component of the core genome of Enterococcus faecalis that has been shown to be important for biofilm formation, adherence to host fibrinogen, collagen and platelets, and in experimental endocarditis and urinary tract infection models. Here, we created single and double deletion mutants of the pilus subunits and sortases; next, by combining western blotting, immunoelectron microscopy, and using ebpR in trans to increase pilus production, we identified EbpA as the tip pilin and EbpB as anchor at the pilus base, the latter attached to cell wall by the housekeeping sortase, SrtA. We also confirmed EbpC and Bps as the major pilin and pilin-specific sortase, respectively, both required for pilus polymerization. Interestingly, pilus length was increased and the number of pili decreased by deleting ebpA, while control overexpression of ebpA in trans restored wild-type levels, suggesting a dual role for EbpA in both initiation and termination of pilus polymerization. We next investigated the contribution of each pilin subunit to biofilm formation and UTI. Significant reduction in biofilm formation was observed with deletion of ebpA or ebpC (P<0.001) while ebpB was found to be dispensable; a similar result was seen in kidney CFUs in experimental UTI (ΔebpA, ΔebpC, P≤0.0093; ΔebpB, non-significant, each vs. OG1RF). Hence, our data provide important structural and functional information about these ubiquitous E. faecalis pili and, based on their demonstrated importance in biofilm and infection, suggest EbpA and EbpC as potential targets for antibody-based therapeutic approaches.
Infection and Immunity | 2014
Kenneth L. Pinkston; Kavindra V. Singh; Peng Gao; Nathaniel Wilganowski; Holly Robinson; Sukhen C. Ghosh; Ali Azhdarinia; Eva M. Sevick-Muraca; Barbara E. Murray; Barrett R. Harvey
ABSTRACT Passive protection, the administration of antibodies to prevent infection, has garnered significant interest in recent years as a potential prophylactic countermeasure to decrease the prevalence of hospital-acquired infections. Pili, polymerized protein structures covalently anchored to the peptidoglycan wall of many Gram-positive pathogens, are ideal targets for antibody intervention, given their importance in establishing infection and their accessibility to antibody interactions. In this work, we demonstrated that a monoclonal antibody to the major component of Enterococcus faecalis pili, EbpC, labels polymerized pilus structures, diminishes biofilm formation, and significantly prevents the establishment of a rat endocarditis infection. The effectiveness of this anti-EbpC monoclonal provides strong evidence in support of its potential as a preventative. In addition, after radiolabeling, this monoclonal identified the site of enterococcal infection, providing a rare example of molecularly specific imaging of an established bacterial infection and demonstrating the versatility of this agent for use in future diagnostic and therapeutic applications.
Molecular Imaging and Biology | 2012
Cynthia Davies-Venn; Bonnie Angermiller; Nathaniel Wilganowski; Pradip Ghosh; Barrett R. Harvey; Grace Wu; Sunkuk Kwon; Melissa B. Aldrich; Eva M. Sevick-Muraca
PurposeThe aim of this study was to develop and characterize a novel peptide imaging agent for noninvasive near-infrared fluorescence imaging of protein transport by the lymphatics. An imaging agent consisting of a cyclic albumin-binding domain (cABD) peptide, with sequence, Arg-Leu-Ile-Glu-Asp-Ile-Cys-Leu-Pro-Arg-Trp-Gly-Cys-Leu-Trp-Glu-Asp-Asp-Lys, was conjugated to a near-infrared fluorophore, IRDye800CW, allowing for enhanced vascular uptake, retention, and fluorescence imaging.ProcedureCharacterization of the cABD-IRDye800 peptide conjugate was performed using fluorescence spectroscopy to assess optical properties and SDS-PAGE and Biacore binding assays to determine binding affinity and specificity. Fluorescence imaging of normal C57BL/6 mice was conducted to monitor lymphatic uptake and retention.ResultscABD-IRDye800 exhibited approximately six times greater fluorescent yield and greater stability than indocyanine green, an agent previously used in humans to image lymphatic vasculature. The agent exhibited affinity for albumin with IC50 and Kd in the nanomolar range and demonstrated superior retention characteristics within mouse lymphatics when compared with IRDye800CW.ConclusionscABD-IRDye800 has utility for assessing lymphatic function in mouse models of human lymphatic disease and the potential for use in clinical diagnostic imaging of the lymphatic vasculature.