Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry J. Byrne is active.

Publication


Featured researches published by Barry J. Byrne.


Gene Therapy | 1999

Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield

Sergei Zolotukhin; Barry J. Byrne; E Mason; Irene Zolotukhin; Mark R. Potter; Kye Chesnut; C Summerford; R J Samulski; Nicholas Muzyczka

Conventional methods for rAAV purification that are based on cesium chloride ultracentrifugation have often produced vector preparations of variable quality and resulted in significant loss of particle infectivity. We report here several novel purification strategies that involve the use of non-ionic iodixanol gradients followed by ion exchange or heparin affinity chromatography by either conventional or HPLC columns. These methods result in more than 50% recovery of rAAV from a crude lysate and routinely produce vector that is more than 99% pure. More importantly, the new purification procedures consistently produce rAAV stocks with particle-to-infectivity ratios of less than 100, which is significantly better than conventional methods. The new protocol increases the overall yield of infectious rAAV by at least 10-fold and allows for the complete purification of rAAV in 1 working day. Several of these methods should also be useful for large-scale production.


Human Gene Therapy | 2008

Treatment of Leber Congenital Amaurosis Due to RPE65 Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial

William W. Hauswirth; Tomas S. Aleman; Shalesh Kaushal; Artur V. Cideciyan; Sharon B. Schwartz; Lili Wang; Thomas J. Conlon; Sanford L. Boye; Terence R. Flotte; Barry J. Byrne; Samuel G. Jacobson

Leber congenital amaurosis (LCA) is a group of autosomal recessive blinding retinal diseases that are incurable. One molecular form is caused by mutations in the RPE65 (retinal pigment epithelium-specific 65-kDa) gene. A recombinant adeno-associated virus serotype 2 (rAAV2) vector, altered to carry the human RPE65 gene (rAAV2-CBSB-hRPE65), restored vision in animal models with RPE65 deficiency. A clinical trial was designed to assess the safety of rAAV2-CBSB-hRPE65 in subjects with RPE65-LCA. Three young adults (ages 21-24 years) with RPE65-LCA received a uniocular subretinal injection of 5.96 x 10(10) vector genomes in 150 microl and were studied with follow-up examinations for 90 days. Ocular safety, the primary outcome, was assessed by clinical eye examination. Visual function was measured by visual acuity and dark-adapted full-field sensitivity testing (FST); central retinal structure was monitored by optical coherence tomography (OCT). Neither vector-related serious adverse events nor systemic toxicities were detected. Visual acuity was not significantly different from baseline; one patient showed retinal thinning at the fovea by OCT. All patients self-reported increased visual sensitivity in the study eye compared with their control eye, especially noticeable under reduced ambient light conditions. The dark-adapted FST results were compared between baseline and 30-90 days after treatment. For study eyes, sensitivity increases from mean baseline were highly significant (p < 0.001); whereas, for control eyes, sensitivity changes were not significant (p = 0.99). Comparisons are drawn between the present work and two other studies of ocular gene therapy for RPE65-LCA that were carried out contemporaneously and reported.


Nature Medicine | 2002

Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization.

Maria B. Grant; W. Stratford May; Sergio Caballero; Gary A. J. Brown; Steven M. Guthrie; Robert N. Mames; Barry J. Byrne; Timothy Vaught; Polyxenie E. Spoerri; Ammon B. Peck; Edward W. Scott

Adults maintain a reservoir of hematopoietic stem cells that can enter the circulation to reach organs in need of regeneration. We developed a novel model of retinal neovascularization in adult mice to examine the role of hematopoietic stem cells in revascularizing ischemic retinas. Adult mice were durably engrafted with hematopoietic stem cells isolated from transgenic mice expressing green fluorescent protein. We performed serial long-term transplants, to ensure activity arose from self-renewing stem cells, and single hematopoietic stem-cell transplants to show clonality. After durable hematopoietic engraftment was established, retinal ischemia was induced to promote neovascularization. Our results indicate that self-renewing adult hematopoietic stem cells have functional hemangioblast activity, that is, they can clonally differentiate into all hematopoietic cell lineages as well as endothelial cells that revascularize adult retina. We also show that recruitment of endothelial precursors to sites of ischemic injury has a significant role in neovascularization.


The EMBO Journal | 2000

Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy

Jill W. Miller; Carl R. Urbinati; Patana Teng-umnuay; Myrna G. Stenberg; Barry J. Byrne; Charles A. Thornton; Maurice S. Swanson

Myotonic dystrophy (DM1) is an autosomal dominant neuromuscular disorder associated with a (CTG)n expansion in the 3′‐untranslated region of the DM1 protein kinase (DMPK) gene. To explain disease pathogenesis, the RNA dominance model proposes that the DM1 mutation produces a gain‐of‐function at the RNA level in which CUG repeats form RNA hairpins that sequester nuclear factors required for proper muscle development and maintenance. Here, we identify the triplet repeat expansion (EXP) RNA‐binding proteins as candidate sequestered factors. As predicted by the RNA dominance model, binding of the EXP proteins is specific for dsCUG RNAs and proportional to the size of the triplet repeat expansion. Remarkably, the EXP proteins are homologous to the Drosophila muscleblind proteins required for terminal differentiation of muscle and photoreceptor cells. EXP expression is also activated during mammalian myoblast differentiation, but the EXP proteins accumulate in nuclear foci in DM1 cells. We propose that DM1 disease is caused by aberrant recruitment of the EXP proteins to the DMPK transcript (CUG)n expansion.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics

Artur V. Cideciyan; Tomas S. Aleman; Sanford L. Boye; Sharon B. Schwartz; Shalesh Kaushal; Alejandro J. Roman; Ji-jing Pang; Alexander Sumaroka; Elizabeth A. M. Windsor; James M. Wilson; Terence R. Flotte; Gerald A. Fishman; Elise Héon; Edwin M. Stone; Barry J. Byrne; Samuel G. Jacobson; William W. Hauswirth

The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy.


Neurology | 2007

Recombinant human acid α-glucosidase: Major clinical benefits in infantile-onset Pompe disease

Priya S. Kishnani; Deya Corzo; Marc Nicolino; Barry J. Byrne; Hanna Mandel; Wuh-Liang Hwu; Nancy Leslie; J. Levine; C. Spencer; M. McDonald; ‡ Ji-Yao Li; J. Dumontier; M. Halberthal; Yin-Hsiu Chien; Robert J. Hopkin; S. Vijayaraghavan; D. Gruskin; D. Bartholomew; A. van der Ploeg; John P. Clancy; Rossella Parini; G. Morin; Michael Beck; G. S. De la Gastine; M. Jokic; Beth L. Thurberg; Susan Richards; Deeksha Bali; M. Davison; M. A. Worden

Background: Pompe disease is a progressive metabolic neuromuscular disorder resulting from deficiency of lysosomal acid α-glucosidase (GAA). Infantile-onset Pompe disease is characterized by cardiomyopathy, respiratory and skeletal muscle weakness, and early death. The safety and efficacy of recombinant human (rh) GAA were evaluated in 18 patients with rapidly progressing infantile-onset Pompe disease. Methods: Patients were diagnosed at 6 months of age and younger and exhibited severe GAA deficiency and cardiomyopathy. Patients received IV infusions of rhGAA at 20 mg/kg (n = 9) or 40 mg/kg (n = 9) every other week. Analyses were performed 52 weeks after the last patient was randomized to treatment. Results: All patients (100%) survived to 18 months of age. A Cox proportional hazards analysis demonstrated that treatment reduced the risk of death by 99%, reduced the risk of death or invasive ventilation by 92%, and reduced the risk of death or any type of ventilation by 88%, as compared to an untreated historical control group. There was no clear advantage of the 40-mg/kg dose with regard to efficacy. Eleven of the 18 patients experienced 164 infusion-associated reactions; all were mild or moderate in intensity. Conclusions: Recombinant human acid α-glucosidase is safe and effective for treatment of infantile-onset Pompe disease. Eleven patients experienced adverse events related to treatment, but none discontinued. The young age at which these patients initiated therapy may have contributed to their improved response compared to previous trials with recombinant human acid α-glucosidase in which patients were older.


Methods | 2002

Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors

Sergei Zolotukhin; Mark Potter; Irene Zolotukhin; Yoshihisa Sakai; Scott A. Loiler; Thomas J. Fraites; Vince A. Chiodo; Tina Phillipsberg; Nicholas Muzyczka; William W. Hauswirth; Terance R Flotte; Barry J. Byrne; Richard O. Snyder

Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.


Archives of Ophthalmology | 2012

Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations: Safety and Efficacy in 15 Children and Adults Followed Up to 3 Years

Samuel G. Jacobson; Artur V. Cideciyan; R. Ratnakaram; Elise Héon; Sharon B. Schwartz; Alejandro J. Roman; Marc C. Peden; Tomas S. Aleman; Sanford L. Boye; Alexander Sumaroka; Thomas J. Conlon; Roberto Calcedo; Ji-jing Pang; Kirsten E. Erger; Melani B. Olivares; Cristina L. Mullins; Malgorzata Swider; Shalesh Kaushal; William J. Feuer; Alessandro Iannaccone; Gerald A. Fishman; Edwin M. Stone; Barry J. Byrne; William W. Hauswirth

OBJECTIVE To determine the safety and efficacy of subretinal gene therapy in the RPE65 form of Leber congenital amaurosis using recombinant adeno-associated virus 2 (rAAV2) carrying the RPE65 gene. DESIGN Open-label, dose-escalation phase I study of 15 patients (range, 11-30 years of age) evaluated after subretinal injection of the rAAV2- RPE65 vector into the worse-functioning eye. Five cohorts represented 4 dose levels and 2 different injection strategies. MAIN OUTCOME MEASURES Primary outcomes were systemic and ocular safety. Secondary outcomes assayed visual function with dark-adapted full-field sensitivity testing and visual acuity with Early Treatment Diabetic Retinopathy Study charts. Further assays included immune responses to the vector, static visual fields, pupillometry, mobility performance, and optical coherence tomography. RESULTS No systemic toxicity was detected; ocular adverse events were related to surgery. Visual function improved in all patients to different degrees; improvements were localized to treated areas. Cone and rod sensitivities increased significantly in the study eyes but not in the control eyes. Minor acuity improvements were recorded in many study and control eyes. Major acuity improvements occurred in study eyes with the lowest entry acuities and parafoveal fixation loci treated with subretinal injections. Other patients with better foveal structure lost retinal thickness and acuity after subfoveal injections. CONCLUSIONS Gene therapy for Leber congenital amaurosis caused by RPE65 mutations is sufficiently safe and substantially efficacious in the extrafoveal retina. There is no benefit and some risk in treating the fovea. No evidence of age-dependent effects was found. Our results point to specific treatment strategies for subsequent phases. APPLICATION TO CLINICAL PRACTICE Gene therapy for inherited retinal disease has the potential to become a future part of clinical practice. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00481546.


JAMA | 2011

Effect of Intracoronary Delivery of Autologous Bone Marrow Mononuclear Cells 2 to 3 Weeks Following Acute Myocardial Infarction on Left Ventricular Function The LateTIME Randomized Trial

Jay H. Traverse; Timothy D. Henry; Stephen G. Ellis; Carl J. Pepine; James T. Willerson; David Zhao; John R. Forder; Barry J. Byrne; Antonis K. Hatzopoulos; Marc S. Penn; Emerson C. Perin; Kenneth W. Baran; Jeffrey W. Chambers; Charles R. Lambert; Ganesh Raveendran; Daniel I. Simon; Douglas E. Vaughan; Lara M. Simpson; Adrian P. Gee; Doris A. Taylor; Christopher R. Cogle; James D. Thomas; Guilherme V. Silva; Beth C. Jorgenson; Rachel E. Olson; Sherry Bowman; Judy Francescon; Carrie Geither; Eileen Handberg; Deirdre Smith

CONTEXT Clinical trial results suggest that intracoronary delivery of autologous bone marrow mononuclear cells (BMCs) may improve left ventricular (LV) function when administered within the first week following myocardial infarction (MI). However, because a substantial number of patients may not present for early cell delivery, the efficacy of autologous BMC delivery 2 to 3 weeks post-MI warrants investigation. OBJECTIVE To determine if intracoronary delivery of autologous BMCs improves global and regional LV function when delivered 2 to 3 weeks following first MI. DESIGN, SETTING, AND PATIENTS A randomized, double-blind, placebo-controlled trial (LateTIME) of the National Heart, Lung, and Blood Institute-sponsored Cardiovascular Cell Therapy Research Network of 87 patients with significant LV dysfunction (LV ejection fraction [LVEF] ≤45%) following successful primary percutaneous coronary intervention (PCI) between July 8, 2008, and February 28, 2011. INTERVENTIONS Intracoronary infusion of 150 × 10(6) autologous BMCs (total nucleated cells) or placebo (BMC:placebo, 2:1) was performed within 12 hours of bone marrow aspiration after local automated cell processing. MAIN OUTCOME MEASURES Changes in global (LVEF) and regional (wall motion) LV function in the infarct and border zone between baseline and 6 months, measured by cardiac magnetic resonance imaging. Secondary end points included changes in LV volumes and infarct size. RESULTS A total of 87 patients were randomized (mean [SD] age, 57 [11] years; 83% men). Harvesting, processing, and intracoronary delivery of BMCs in this setting was feasible. Change between baseline and 6 months in the BMC group vs placebo for mean LVEF (48.7% to 49.2% vs 45.3% to 48.8%; between-group mean difference, -3.00; 95% CI, -7.05 to 0.95), wall motion in the infarct zone (6.2 to 6.5 mm vs 4.9 to 5.9 mm; between-group mean difference, -0.70; 95% CI, -2.78 to 1.34), and wall motion in the border zone (16.0 to 16.6 mm vs 16.1 to 19.3 mm; between-group mean difference, -2.60; 95% CI, -6.03 to 0.77) were not statistically significant. No significant change in LV volumes and infarct volumes was observed; both groups decreased by a similar amount at 6 months vs baseline. CONCLUSION Among patients with MI and LV dysfunction following reperfusion with PCI, intracoronary infusion of autologous BMCs vs intracoronary placebo infusion, 2 to 3 weeks after PCI, did not improve global or regional function at 6 months. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00684060.


Circulation Research | 2006

Recombinant Adeno-Associated Virus Serotype 9 Leads to Preferential Cardiac Transduction In Vivo

Christina A. Pacak; Cathryn Mah; Bijoy D. Thattaliyath; Thomas J. Conlon; Melissa A. Lewis; Denise E. Cloutier; Irene Zolotukhin; Alice F. Tarantal; Barry J. Byrne

Heart disease is often the end result of inherited genetic defects, which may potentially be treatable using a gene-transfer approach. Recombinant adeno-associated virus (rAAV)-mediated gene delivery has emerged as a realistic method for the treatment of such disorders. Here, we demonstrate and compare the natural affinity of specific AAV serotype capsids for transduction of cardiac tissue. We compared the previously accepted optimal rAAV serotype for transduction of skeletal muscle, rAAV2/1, with rAAV2/8 and the newer rAAV2/9 vectors carrying the CMV-lacZ construct in their respective abilities to transcend vasculature and transduce myocardium following intravenous delivery of 1×1011 vector genomes in neonatal mice. We found that both rAAV2/8 and rAAV2/9 are able to transduce myocardium at ≈20- and 200-fold (respectively) higher levels than rAAV2/1. Biodistribution analysis revealed that rAAV2/9 and rAAV2/8 demonstrate similar behavior in extracardiac tissue. Vector genome quantification showed an increase in genome copy numbers in cardiac tissue for several weeks following administration, which corresponds to expression data. In addition, we intravenously administered 1×1011 vector genomes of rAAV2/9-CMV-lacZ into adult mice and achieved an expression biodistribution profile similar to that found following delivery to newborns. Although higher doses of virus will be necessary to approach those levels observed following neonatal injections, adult myocardium is also readily transduced by rAAV2/9. Finally, we have demonstrated physiological disease correction by AAV9 gene transfer in a mouse model of Pompe disease via ECG tracings and that intravenous delivery of the same vector preferentially transduces cardiac tissue in nonhuman primates.

Collaboration


Dive into the Barry J. Byrne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence R. Flotte

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge