Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry M. Freifeld is active.

Publication


Featured researches published by Barry M. Freifeld.


Geology | 2006

Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins

Yousif K. Kharaka; David R. Cole; Susan D. Hovorka; William D. Gunter; Kevin G. Knauss; Barry M. Freifeld

To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick sandstone section of the Frio Formation, a regional brine and oil reservoir in the U.S. Gulf Coast. Fluid samples obtained from the injection and observation wells before CO2 injection showed a Na-CaCl‐type brine with 93,000 mg/L total dissolved solids (TDS) at near saturation with CH4 at reservoir conditions. Following CO2 breakthrough, samples showed sharp drops in pH (6.5‐5.7), pronounced increases in alkalinity (100‐3000 mg/L as HCO3) and Fe (30‐1100 mg/L), and significant shifts in the isotopic compositions of H2O, dissolved inorganic carbon (DIC), and CH4. Geochemical modeling indicates that brine pH would have dropped lower but for the buffering by dissolution of carbonate and iron oxyhydroxides. This rapid dissolution of carbonate and other minerals could ultimately create pathways in the rock seals or well cements for CO2 and brine leakage. Dissolution of minerals, especially iron oxyhydroxides, could mobilize toxic trace metals and, where residual oil or suitable organics are present, the injected CO2 could also mobilize toxic organic compounds. Environmental impacts could be major if large brine volumes with mobilized toxic metals and organics migrated into potable groundwater. The d 18 O values for brine and CO2 samples indicate that supercritical CO2 comprises ;50% of pore-fluid volume ;6 mo after the end of injection. Postinjection sampling, coupled with geochemical modeling, indicates that the brine gradually will return to its preinjection composition.


Journal of Geophysical Research | 2005

The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment

Barry M. Freifeld; Robert C. Trautz; Yousif K. Kharaka; Tommy J. Phelps; Larry R. Myer; Susan D. Hovorka; Daniel J. Collins

A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase (supercritical CO2-brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydro-geochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-Tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-Tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Safe storage and effective monitoring of CO2 in depleted gas fields

Charles Jenkins; Peter Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; U. Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

Carbon capture and storage (CCS) is vital to reduce CO2 emissions to the atmosphere, potentially providing 20% of the needed reductions in global emissions. Research and demonstration projects are important to increase scientific understanding of CCS, and making processes and results widely available helps to reduce public concerns, which may otherwise block this technology. The Otway Project has provided verification of the underlying science of CO2 storage in a depleted gas field, and shows that the support of all stakeholders can be earned and retained. Quantitative verification of long-term storage has been demonstrated. A direct measurement of storage efficiency has been made, confirming that CO2 storage in depleted gas fields can be safe and effective, and that these structures could store globally significant amounts of CO2.


Geophysical Research Letters | 2008

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber‐optic distributed thermal perturbation sensor

Barry M. Freifeld; S. Finsterle; T. C. Onstott; P. Toole; L. M. Pratt

Ground Surface Temperature Reconstructions: Using In Situ Estimates for Thermal Conductivity Acquired with a Fiber-Optic Distributed Thermal Perturbation Sensor Barry M. Freifeld and Stefan Finsterle Lawrence Berkeley National Laboratory, Berkeley, CA, USA Tullis C. Onstott Princeton University, Princeton, NJ, USA Trish Toole Zinifex Canada Inc., Ontario, Canada Lisa M. Pratt Indiana University, Bloomington, IA USA Abstract We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation’s thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67°22’N, 110°50’W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 ± 0.8°C over the long- term average. Introduction Given that global climate models predict the greatest increases in temperature at Arctic latitudes, changes in permafrost are increasingly looked upon as a harbinger of climate change (Anisimov et al., 2007). Borehole thermal profiles provide information on past ground surface temperature histories (GSTH) not available from atmospheric temperature records collected prior to the twentieth century (Lachenbruch & Marshall, 1986; Harris & Chapman, 1997). To invert thermal profile data for estimating GSTH, thermal properties need to be constrained. Prior climate reconstruction studies have either used laboratory measurements performed on drill cores or cutting fragments, or have used estimates based on lithologic descriptions (Taylor et al., 2006; Majorowicz and Safanda, 2001). Imperfect drill core recovery and the effort required to perform numerous laboratory measurements usually dictate simplification of the thermal conductivity field used in the analyses.


Geophysical Prospecting | 2013

Laboratory seismic monitoring of supercritical CO2 flooding in sandstone cores using the Split Hopkinson Resonant Bar technique with concurrent x-ray CT imaging

Seiji Nakagawa; Timothy J. Kneafsey; Thomas M. Daley; Barry M. Freifeld; Emily V. L. Rees

ABSTRACT Accurate estimation of CO2 saturation in a saline aquifer is essential for the monitoring of supercritical CO2 injected for geological sequestration. Because of strong contrasts in density and elastic properties between brine and CO2 at reservoir conditions, seismic methods are among the most commonly employed techniques for this purpose. However the relationship between seismic (P‐wave) velocity and CO2 saturation is not unique because the velocity depends on both wave frequency and the CO2 distribution in rock. In the laboratory, we conducted measurements of seismic properties of sandstones during supercritical CO2 injection. Seismic responses of small sandstone cores were measured at frequencies near 1 kHz, using a modified resonant bar technique (Split Hopkinson Resonant Bar method). Concurrently, saturation and distribution of supercritical CO2 in the rock cores were determined via x‐ray CT scans. Changes in the determined velocities generally agreed with the Gassmann model. However, both the velocity and attenuation of the extension wave (Youngs modulus or ‘bar’ wave) for the same CO2 saturation exhibited differences between the CO2 injection test and the subsequent brine re‐injection test, which was consistent with the differences in the CO2 distribution within the cores. Also, a comparison to ultrasonic velocity measurements on a bedded reservoir rock sample revealed that both compressional and shear velocities (and moduli) were strongly dispersive when the rock was saturated with brine. Further, large decreases in the velocities of saturated samples indicated strong sensitivity of the rocks frame stiffness to pore fluid.


Geophysical Prospecting | 2016

Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama

Tom Daley; Douglas E. Miller; K. Dodds; Paul J. Cook; Barry M. Freifeld

A modular borehole monitoring concept has been implemented to provide a suite of well-based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre-optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi-conductor tubing-encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre-optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre-optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocityconverted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal-to-noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing-deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.


Geophysics | 2009

Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project

Kevin Dodds; Tom Daley; Barry M. Freifeld; Milovan Urosevic; Anton Kepic; Sandeep Sharma

The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, and its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas.

Curtis M. Oldenburg; Barry M. Freifeld; Karsten Pruess; Lehua Pan; Stefan Finsterle; George J. Moridis

In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate.


Geological Society, London, Special Publications | 2006

On-site geological core analysis using a portable X-ray computed tomographic system

Barry M. Freifeld; Timothy J. Kneafsey; Frank R. Rack

Abstract X-ray computed tomography (CT) is an established technique for non-destructively characterizing geological cores. CT provides information on sediment structure, diagenetic alteration, fractures, flow channels and barriers, porosity and fluid-phase saturation. A portable CT imaging system has been developed specifically for imaging whole-round cores at the drilling site. The new system relies upon carefully designed radiological shielding to minimize the size and weight of the resulting instrument. Specialized X-ray beam collimators and filters maximize system sensitivity and performance. The system has been successfully deployed on the research vessel JOIDES Resolution for Ocean Drilling Program’s legs 204 and 210, at the Ocean Drilling Program’s refrigerated Gulf Coast Core Repository, as well as on the Hot Ice #1 drilling platform located near the Kuparuk Field, Alaska. A methodology for performing simple densiometry measurements, as well as scanning for gross structural features, is presented using radiographs from ODP Leg 204. Reconstructed CT images from Hot Ice #1 demonstrate the use of CT for discerning core textural features. To demonstrate the use of CT to quantitatively interpret dynamic processes, we calculate 95% confidence intervals for density changes occurring during a laboratory methane hydrate dissociation experiment. The field deployment of a CT represents a paradigm shift in core characterization, opening up the possibility for rapid systematic characterization of three-dimensional structural features, and leading to improved subsampling and core-processing procedures.


Scientific Reports | 2017

Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study

Shan Dou; Nate Lindsey; Anna Wagner; Thomas M. Daley; Barry M. Freifeld; Michelle Robertson; John E. Peterson; Craig Ulrich; Eileen R. Martin; Jonathan B. Ajo-Franklin

Ambient-noise-based seismic monitoring of the near surface often has limited spatiotemporal resolutions because dense seismic arrays are rarely sufficiently affordable for such applications. In recent years, however, distributed acoustic sensing (DAS) techniques have emerged to transform telecommunication fiber-optic cables into dense seismic arrays that are cost effective. With DAS enabling both high sensor counts (“large N”) and long-term operations (“large T”), time-lapse imaging of shear-wave velocity (VS) structures is now possible by combining ambient noise interferometry and multichannel analysis of surface waves (MASW). Here we report the first end-to-end study of time-lapse VS imaging that uses traffic noise continuously recorded on linear DAS arrays over a three-week period. Our results illustrate that for the top 20 meters the VS models that is well constrained by the data, we obtain time-lapse repeatability of about 2% in the model domain—a threshold that is low enough for observing subtle near-surface changes such as water content variations and permafrost alteration. This study demonstrates the efficacy of near-surface seismic monitoring using DAS-recorded ambient noise.

Collaboration


Dive into the Barry M. Freifeld's collaboration.

Top Co-Authors

Avatar

Timothy J. Kneafsey

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christine Doughty

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tom Daley

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Daley

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jonathan B. Ajo-Franklin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jonathan Ennis-King

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Michelle Robertson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Liviu Tomutsa

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert C. Trautz

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul J. Cook

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge