Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry R. Davies is active.

Publication


Featured researches published by Barry R. Davies.


Cancer Research | 2010

AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity

Christine M. Chresta; Barry R. Davies; Ian Hickson; Tom Harding; Sabina Cosulich; Susan E. Critchlow; John Vincent; Rebecca Ellston; Darren Jones; Patrizia Sini; Dominic James; Zoe Howard; Phillippa Dudley; Gareth Hughes; Lisa L. Smith; Sharon Maguire; Marc Geoffery Hummersone; Karine Malagu; Keith Menear; Richard Jenkins; Matt Jacobsen; Graeme Cameron Murray Smith; Sylvie Guichard; Martin Pass

The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, cell survival, and autophagy. Allosteric inhibitors of mTORC1, such as rapamycin, have been extensively used to study tumor cell growth, proliferation, and autophagy but have shown only limited clinical utility. Here, we describe AZD8055, a novel ATP-competitive inhibitor of mTOR kinase activity, with an IC50 of 0.8 nmol/L. AZD8055 showed excellent selectivity (approximately 1,000-fold) against all class I phosphatidylinositol 3-kinase (PI3K) isoforms and other members of the PI3K-like kinase family. Furthermore, there was no significant activity against a panel of 260 kinases at concentrations up to 10 micromol/L. AZD8055 inhibits the phosphorylation of mTORC1 substrates p70S6K and 4E-BP1 as well as phosphorylation of the mTORC2 substrate AKT and downstream proteins. The rapamycin-resistant T37/46 phosphorylation sites on 4E-BP1 were fully inhibited by AZD8055, resulting in significant inhibition of cap-dependent translation. In vitro, AZD8055 potently inhibits proliferation and induces autophagy in H838 and A549 cells. In vivo, AZD8055 induces a dose-dependent pharmacodynamic effect on phosphorylated S6 and phosphorylated AKT at plasma concentrations leading to tumor growth inhibition. Notably, AZD8055 results in significant growth inhibition and/or regression in xenografts, representing a broad range of human tumor types. AZD8055 is currently in phase I clinical trials.


Molecular Cancer Therapeutics | 2007

AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models

Barry R. Davies; Armelle Logie; Jennifer S. McKay; Paul Martin; Samantha Steele; Richard Jenkins; Mark Cockerill; Sue Cartlidge; Paul D. Smith

Constitutive activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in human cancers is often associated with mutational activation of BRAF or RAS. MAPK/ERK kinase 1/2 kinases lie downstream of RAS and BRAF and are the only acknowledged activators of ERK1/2, making them attractive targets for therapeutic intervention. AZD6244 (ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of MAPK/ERK kinase 1/2. In vitro cell viability inhibition screening of a tumor cell line panel found that lines harboring BRAF or RAS mutations were more likely to be sensitive to AZD6244. The in vivo mechanisms by which AZD6244 inhibits tumor growth were investigated. Chronic dosing with 25 mg/kg AZD6244 bd resulted in suppression of growth of Colo-205, Calu-6, and SW-620 xenografts, whereas an acute dose resulted in significant inhibition of ERK1/2 phosphorylation. Increased cleaved caspase-3, a marker of apoptosis, was detected in Colo-205 and Calu-6 but not in SW-620 tumors where a significant decrease in cell proliferation was detected. Chronic dosing of AZD6244 induced a morphologic change in SW-620 tumors to a more differentiated phenotype. The potential of AZD6244 in combination with cytotoxic drugs was evaluated in mice bearing SW-620 xenografts. Treatment with tolerated doses of AZD6244 and either irinotecan or docetaxel resulted in significantly enhanced antitumor efficacy relative to that of either agent alone. These results indicate that AZD6244 has potential to inhibit proliferation and induce apoptosis and differentiation, but the response varies between different xenografts. Moreover, enhanced antitumor efficacy can be obtained by combining AZD6244 with the cytotoxic drugs irinotecan or docetaxel. [Mol Cancer Ther 2007;6(8):2209–19]


The Journal of Pathology | 2002

Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer

Barry R. Davies; M O'Donnell; Garrett C. Durkan; Philip S. Rudland; Roger Barraclough; David E. Neal; J. Kilian Mellon

The calcium‐binding protein S100A4 induces the metastatic phenotype in rodent models of breast cancer and its expression correlates strongly with reduced survival in human breast cancer. The expression of S100A4 in normal bladders and 101 bladder tumours has been studied using immunocytochemistry. Moderate or strong expression of S100A4 was found in 28% of the tumours, whilst the remaining tumours and normal urothelium either failed to stain or showed weak staining. S100A4 staining was more frequently observed in invasive bladder tumours than in non‐invasive tumours (p<0.05). In invasive tumours, S100A4 staining was usually strongest in invasive regions and single infiltrating cells. Statistically significant associations were found between S100A4 expression and metastasis (p=0.0003) and reduced survival (p<0.0001). It is concluded that S100A4 expression may play an important role in bladder cancer and may identify a subgroup of patients at increased risk of metastasis who should be considered for adjuvant systemic therapy. Copyright


Histopathology | 2004

Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms.

Pallavi Mehrotra; A Okpokam; Ralph Bouhaidar; Sarah Johnson; Janet A. Wilson; Barry R. Davies; Tom Lennard

Aims:  To determine whether galectin‐3 is a sensitive indicator of thyroid malignancy. It has been suggested as a potential marker for differentiating thyroid carcinoma from benign or non‐neoplastic lesions in preoperative fine‐needle aspirates (FNAs).


Clinical Cancer Research | 2004

Evaluation of the Therapeutic Potential of the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Gefitinib in Preclinical Models of Bladder Cancer

José Domínguez-Escrig; John D. Kelly; David E. Neal; Sonya M. King; Barry R. Davies

The epidermal growth factor receptor (EGFR) is associated with aggressive phenotypes and is an independent predictor of stage progression and mortality in bladder cancer. Gefitinib (‘Iressa,’ ZD1839) is an orally active EGFR-tyrosine kinase inhibitor. The objective of this study was to evaluate the in vitro and in vivo effects of gefitinib in the EGFR-expressing human bladder cancer cell lines 253J B-V, RT-112, and T24. EGFR expression was 3- and 2-fold higher in 253J B-V and RT-112, respectively, compared with T24 cells. Ten μm gefitinib inhibited EGFR, p42/44 extracellular signal-regulated kinase (ERK), and Akt/protein kinase B phosphorylation in all three of the cell lines. Inhibition of ERK by gefitinib was significantly greater in 253J B-V compared with RT-112 and T24 cells (9:2:1 in 253J B-V:RT-112:T24), whereas inhibition of Akt phosphorylation was less in 253J B-V compared with RT-112 and T24 cells (1:9:30 in 253J B-V:RT-112:T24). When cultured in serum-free medium supplemented with epidermal growth factor, 10 μm gefitinib inhibited DNA synthesis in T24 and RT-112 cells, whereas 1 μm gefitinib was sufficient to inhibit DNA synthesis in 253J B-V cells. Similarly, in the presence of serum, 10 μm gefitinib induced a significant reduction in S-phase and viable cell number in T24 and RT-112 cells, whereas 1–10 μm gefitinib caused a dose-dependent effect on these phenotypes in 253J B-V cells. Gefitinib significantly enhanced the ability of ionizing radiation to reduce colony forming ability in 253J B-V and RT-112 cells. In nude mice, a daily oral dose of 150 mg/kg gefitinib induced regression of tumors produced by 253J B-V cells growing at s.c. sites and suppression of tumors produced by these cells at orthotopic sites but had no effect on tumors produced by RT-112 cells growing at s.c. sites. The data indicates that gefitinib has potential therapeutic value, alone or in combination with ionizing radiation, in a subset of EGFR-expressing bladder cancers. However, there is a differential response to gefitinib in these EGFR-expressing bladder cancer cell lines. Although gefitinib can inhibit phosphorylation of EGFR, ERK, and Akt, and inhibit growth of bladder cancer cells in vitro, it does not necessarily inhibit growth of bladder cancer cells in vivo. It is likely that optimized therapy approaches will require an accurate “molecular” diagnosis allowing effective, selective, tailored therapeutic strategies to be designed.


British Journal of Cancer | 2002

The human ovarian surface epithelium is an androgen responsive tissue

Richard J. Edmondson; J M Monaghan; Barry R. Davies

The pathogenesis of epithelial ovarian cancer remains unclear. From epidemiological studies raised levels of androgens have been implicated to increase the risk of developing the disease. The purpose of this study was to determine the responses of normal human ovarian surface epithelium to androgens. We have established primary cultures of human ovarian surface epithelium from patients undergoing oophorectomy for benign disease. Total RNA was isolated from these cultures and expression of mRNA encoding for the androgen receptor was demonstrated using reverse transcriptase polymerase chain reaction. The presence of androgen receptor in sections of normal ovary was also investigated using an antibody against androgen receptor. The effects of androgens on DNA synthesis and cell death were determined. Eight out of eight (100%) cultures expressed mRNA encoding the androgen receptor. The presence of androgen receptor in ovarian surface epithelium of sections of normal ovaries was demonstrated in all sections. Mibolerone, a synthetic androgen, caused a significant stimulation of DNA synthesis in 5 out of 9 (55%) cultures when used at a concentration of 1 nM. Mibolerone also caused a significant decrease in cell death in 2 out of 5 (40%) cultures tested. We have demonstrated that the ovarian surface epithelium is an androgen responsive tissue and that androgens can cause an increase in proliferation and a decrease in cell death. These findings have important implications for the pathophysiology of ovarian carcinogenesis.


British Journal of Cancer | 2012

The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models.

Sarah V. Holt; Armelle Logie; Rajesh Odedra; A Heier; S P Heaton; Denis Alferez; Barry R. Davies; Robert W. Wilkinson; Paul D. Smith

Background:The Ras/RAF/MEK/ERK pathway is frequently deregulated in cancer and a number of inhibitors that target this pathway are currently in clinical development. It is likely that clinical testing of these agents will be in combination with standard therapies to harness the apoptotic potential of both the agents. To support this strategy, it has been widely observed that a number of chemotherapeutics stimulate the activation of several intracellular signalling cascades including Ras/RAF/MEK/ERK. The MEK1/2 inhibitor selumetinib has been shown to have anti-tumour activity and induce apoptotic cell death as a monotherapy.Methods:The aim of this study was to identify agents, which would be likely to offer clinical benefit when combined with selumetinib. Here, we used human tumour xenograft models and assessed the effects combining standard chemotherapeutic agents with selumetinib on tumour growth. In addition, we analysed tumour tissue to determine the mechanistic effects of these combinations.Results:Combining selumetinib with the DNA-alkylating agent, temozolomide (TMZ), resulted in enhanced tumour growth inhibition compared with monotherapies. Biomarker studies highlighted an increase in γH2A.X suggesting that selumetinib is able to enhance the DNA damage induced by TMZ alone. In several models we observed that continuous exposure to selumetinib in combination with docetaxel results in tumour regression. Scheduling of docetaxel before selumetinib was more beneficial than when selumetinib was dosed before docetaxel and demonstrated a pro-apoptotic phenotype. Similar results were seen when selumetinib was combined with the Aurora B inhibitor barasertib.Conclusion:The data presented suggests that MEK inhibition in combination with several standard chemotherapeutics or an Aurora B kinase inhibitor is a promising clinical strategy.


Experimental Cell Research | 2003

Immortalisation of human ovarian surface epithelium with telomerase and temperature-senstitive SV40 large T antigen

Barry R. Davies; Islay A Steele; Richard Edmondson; Simon A Zwolinski; Gabriele Saretzki; Thomas von Zglinicki; Michael J. O'Hare

Epithelial ovarian cancer is the most common form of gynaecological malignancy. This lethal disease is thought to arise in ovarian surface epithelial (OSE) cells. The biology of these cells is not well understood, due to the limited amount of tissue that can be obtained from a single biopsy and their limited life span in culture. To overcome these problems, we have conditionally immortalised OSE cells with the catalytic subunit of telomerase (hTERT) and a temperature-sensitive form of SV40 Large T antigen (tsT). We have maintained these cells (designated OSE-C2) in culture for more than 100 population doublings after introduction of the immortalising genes. Early passage OSE-C2 cells have a near-tetraploid karyotype and exhibit a dual mesenchymal-epithelial phenotype, with consistent expression of vimentin and variable expression of cytokeratins and type III collagen, and absence of E cadherin expression. OSE-C2 cells proliferate steadily at the permissive temperature of 33 degrees C, but fail to increase in number at the nonpermissive temperature of 39 degrees C. Serum-deprived OSE-C2 cells are stimulated to grow at 33 degrees C by EGF, whereas they are growth inhibited at 33 degrees C by TGFbeta in the presence or the absence of serum. When temperature shifted to the nonpermissive temperature, OSE-C2 cells modulate to a more mesenchymal phenotype, and a proportion of the cells undergo senescence and/or apoptosis. Moreover, at the nonpermissive temperature, the levels of p53 and SV40 Large T antigen diminish, whilst the level of p21 increases, whereas the level of p16 and telomerase activity is unchanged. This experimental system shows that expression of telomerase alone only allows limited proliferative potential of OSE cells; expression of tsT is necessary to maintain these cells in culture for longer periods, perhaps by its ability to inactivate components of the p53/Rb pathway. OSE-C2 cells may be useful in studying the physiology and differentiation of human OSE cells and provide insight into the poorly understood earliest stages of epithelial ovarian cancer.


Cancer Research | 2012

Enhanced Apoptosis and Tumor Growth Suppression Elicited by Combination of MEK (Selumetinib) and mTOR Kinase Inhibitors (AZD8055)

Sarah V. Holt; Armelle Logie; Barry R. Davies; Denis Alferez; Sarah Runswick; Sarah L. Fenton; Christine M. Chresta; Yi Gu; Jingchuan Zhang; Yi-Long Wu; R. Wilkinson; Sylvie Guichard; Paul D. Smith

The mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/AKT signaling pathways interact at multiple nodes in cancer, including at mTOR complexes, suggesting an increased likelihood of redundancy and innate resistance to any therapeutic effects of single pathway inhibition. In this study, we investigated the therapeutic effects of combining the MAPK extracellular signal-regulated kinase (MEK)1/2 inhibitor selumetinib (AZD6244) with the dual mTORC1 and mTORC2 inhibitor (AZD8055). Concurrent dosing in nude mouse xenograft models of human lung adenocarcinoma (non-small cell lung cancers) and colorectal carcinoma was well tolerated and produced increased antitumor efficacy relative to the respective monotherapies. Pharmacodynamic analysis documented reciprocal pathway inhibition associated with increased apoptosis and Bim expression in tumor tissue from the combination group, where key genes such as DUSP6 that are under MEK functional control were also modulated. Our work offers a strong rationale to combine selumetinib and AZD8055 in clinical trials as an attractive therapeutic strategy.


Oncogene | 2001

Induction of FGF receptor 2-IIIb expression and response to its ligands in epithelial ovarian cancer

Islay A Steele; Richard J. Edmondson; Judith N Bulmer; Brendan S Bolger; Hing Y. Leung; Barry R. Davies

Epithelial ovarian cancers (EOCs) arise in the Ovarian Surface Epithelium (OSE). This tissue is a simple, poorly committed mesothelium which exhibits characteristics of epithelial and mesenchymal cells when grown in culture. In contrast, EOCs frequently exhibit properties of complex epithelial tissues of the female reproductive tract, such as oviductal, endometrial and cervical epithelia, and show induction of expression of epithelial markers such as E-cadherin. Fibroblast Growth Factor Receptor 2 isoform IIIb (FGF receptor 2-IIIb) is a spliced variant of FGF receptor 2 that binds the ligands FGF-1 and FGF-7 with high affinity, and is expressed exclusively by epithelial cells. We have studied the expression of FGF receptor 2-IIIb and its ligands in primary cultures of normal human OSE, EOC cell lines and snap frozen tissue from EOCs. Expression of FGF receptor 2-IIIb mRNA is undetectable in normal OSE, but is expressed in 16/20 (80%) of EOCs. FGFs 1 and 7 mRNAs are expressed in normal OSE, whilst only 4/20 (20%) and 12/20 (60%) of EOCs demonstrated expression for these ligands respectively. However, FGF-7 protein was detected in 70% (mean level = 0.7 ng/ml) of ascitic fluids obtained from patients with EOC. FGFs 1 and 7 stimulate DNA synthesis in EOC cell lines that express FGF receptor 2-IIIb. Moreover, DNA synthesis in these cell lines can be partially blocked by blocking antisera to FGFs 1 and 7. It is suggested that induction of expression of FGF receptor 2-IIIb may play a role in the development of EOCs by rendering the OSE susceptible to paracrine and/or autocrine stimulation by its requisite FGF ligands.

Collaboration


Dive into the Barry R. Davies's collaboration.

Top Co-Authors

Avatar

John D. Kelly

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge