Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry R. Lutz is active.

Publication


Featured researches published by Barry R. Lutz.


Lab on a Chip | 2010

Controlled reagent transport in disposable 2D paper networks.

Elain Fu; Barry R. Lutz; Peter Kauffman; Paul Yager

Recent reports have demonstrated the multi-analyte detection capability of paper networks with multiple outlets per inlet. In this report, we focus on the capabilities of 2D paper networks with multiple inlets per outlet and demonstrate the controlled transport of reagents within paper devices. Specifically, we demonstrate methods of controlling fluid transport using the geometry of the network and dissolvable barriers. Finally, we discuss the implications for higher sensitivity detection using this type of 2D paper network.


Lab on a Chip | 2010

Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks.

Jennifer L. Osborn; Barry R. Lutz; Elain Fu; Peter Kauffman; Dean Y. Stevens; Paul Yager

Conventional microfluidic devices typically require highly precise pumps or pneumatic control systems, which add considerable cost and the requirement for power. These restrictions have limited the adoption of microfluidic technologies for point-of-care applications. Paper networks provide an extremely low-cost and pumpless alternative to conventional microfluidic devices by generating fluid transport through capillarity. We revisit well-known microfluidic devices for hydrodynamic focusing, sized-based extraction of molecules from complex mixtures, micromixing, and dilution, and demonstrate that paper-based devices can replace their expensive conventional microfluidic counterparts.


Analytical Chemistry | 2011

Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format.

Elain Fu; Tinny Liang; Jared Houghtaling; Stephen A. Ramsey; Barry R. Lutz; Paul Yager

Point-of-care diagnostic assays that are rapid, easy-to-use, and low-cost are needed for use in low-resource settings; the lateral flow test has become the standard bioassay format in such settings because it meets those criteria. However, for a number of analytes, conventional lateral flow tests lack the sensitivity needed to have clinical utility. To address this limitation, we are developing a paper network platform that extends the conventional lateral flow test to two dimensions. The two-dimensional structures allow incorporation of multistep processes for improved sensitivity, while still retaining the positive aspects of conventional lateral flow tests. Here we create an easy-to-use, signal-amplified immunoassay based on a modified commercial strip test for human chorionic gonadotropin, the hormone used to detect pregnancy, and demonstrate an improved limit of detection compared to a conventional lateral flow assay. These results highlight the potential of the paper network platform to enhance access to high-quality diagnostic capabilities in low-resource settings in the developed and developing worlds.


Lab on a Chip | 2013

Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

Barry R. Lutz; Tinny Liang; Elain Fu; Peter Kauffman; Paul Yager

Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.


ACS Nano | 2008

Spectral analysis of multiplex Raman probe signatures.

Barry R. Lutz; Claire Dentinger; Lienchi N. Nguyen; Lei Sun; Jingwu Zhang; April Allen; Selena Chan; Beatrice S. Knudsen

Raman nanoparticle probes are an emerging new class of optical labels for interrogation of physiological and pathological processes in bioassays, cells, and tissues. Although their unique emission signatures are ideal for multiplexing, the full potential of these probes has not been realized because conventional analysis methods are inadequate. We report a novel spectral fitting method that exploits the entire spectral signature to quantitatively extract individual probe signals from multiplex spectra. We evaluate the method in a series of multiplex assays using unconjugated and antibody-conjugated composite organic-inorganic nanoparticles (COINs). Results show sensitive multiplex detection of small signals (<2% of total signal) and similar detection limits in corresponding 4-plex and singlet plate binding assays. In a triplex assay on formalin-fixed human prostate tissue, two antibody-conjugated COINs and a conventional fluorophore are used to image expression of prostate-specific antigen, cytokeratin-18, and DNA. The spectral analysis method effectively removes tissue autofluorescence and other unknown background, allowing accurate and reproducible imaging (area under ROC curve 0.89 +/- 0.03) at subcellular spatial resolution. In all assay systems, the error attributable to spectral analysis constitutes <or=2% of total signal. The spectral fitting method provides (1) quantification of signals from multiplex spectra with overlapping peaks, (2) robust spot-by-spot removal of unknown background, (3) the opportunity to quantitatively assess the analysis error, (4) elimination of operator bias, and (5) simple automation appropriate for high-throughput analysis. The simple implementation and universal applicability of this approach significantly expands the potential of Raman probes for quantitative in vivo and ex vivo multiplex analysis.


Lab on a Chip - Miniaturisation for Chemistry and Biology | 2011

Two-dimensional paper networks

Barry R. Lutz; Philip Trinh; Cameron Ball; Elain Fu; Paul Yager

Most laboratory assays take advantage of multi-step protocols to achieve high performance, but conventional paper-based tests (e.g., lateral flow tests) are generally limited to assays that can be carried out in a single fluidic step. We have developed two-dimensional paper networks (2DPNs) that use materials from lateral flow tests but reconfigure them to enable programming of multi-step reagent delivery sequences. The 2DPN uses multiple converging fluid inlets to control the arrival time of each fluid to a detection zone or reaction zone, and it requires a method to disconnect each fluid source in a corresponding timed sequence. Here, we present a method that allows programmed disconnection of fluid sources required for multi-step delivery. A 2DPN with legs of different lengths is inserted into a shared buffer well, and the dropping fluid surface disconnects each leg at in a programmable sequence. This approach could enable multi-step laboratory assays to be converted into simple point-of-care devices that have high performance yet remain easy to use.


Lab on a Chip | 2010

Visualization and measurement of flow in two-dimensional paper networks.

Peter Kauffman; Elain Fu; Barry R. Lutz; Paul Yager

The two-dimensional paper network (2DPN) is a versatile new microfluidic format for performing complex chemical processes. For chemical detection, for example, 2DPNs have the potential to exceed the capabilities and performance of existing paper-based lateral flow devices at a comparable cost and ease of use. To design such 2DPNs, it is necessary to predict 2D flow patterns and velocities within them, but because of the scattering of the paper matrix, conventional particle imaging velocimetry is not practical. In this note, we demonstrate two methods for visualization of flow in 2DPNs that are inexpensive, easy to implement, and quantifiable.


Journal of Histochemistry and Cytochemistry | 2008

Raman Nanoparticle Probes for Antibody-based Protein Detection in Tissues

Barry R. Lutz; Claire Dentinger; Lei Sun; Lienchi Nguyen; Jingwu Zhang; A. J. Chmura; April Allen; Selena Chan; Beatrice S. Knudsen

Surface-enhanced Raman scattering (SERS) nanoparticles are emerging as a new approach for optical detection of biomolecules. In a model assay in formalin-fixed paraffin-embedded (FFPE) prostate tissue sections, we detect prostate-specific antigen (PSA) using antibody (Ab) conjugated to composite organic–inorganic nanoparticles (COINs), and we use identical staining protocols to compare COIN-Ab and Alexa–Ab conjugates in adjacent tissue sections. Spectral analysis illustrates the fundamental difference between fluorescence and Raman signatures and accurately extracts COIN probe signals from background autofluorescence. Probe signals are used to generate images of PSA expression on the tissue, and quality measures are presented to characterize the performance of the COIN assay in comparison to Alexa. Staining accuracy (ability to correctly identify PSA expression in epithelial cells) is somewhat less for COIN than Alexa, which is attributed to an elevated false negative rate of the COIN. However, COIN provided signal intensities comparable to Alexa, and good intra-, inter-, and lot-to-lot consistencies. Overall, COIN and Alexa detection reagents possess similar performance with FFPE tissues, supporting the further development of Raman probes for this application. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Analyst | 2014

Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices.

Elain Fu; Barry R. Lutz; Paul Yager

Lateral flow devices are commonly used for many point-of-care (POC) applications in low-resource settings. However, they lack the sensitivity needed for many analytes relevant in the diagnosis of diseases. One approach to achieve higher sensitivity is signal amplification, which is commonly used in laboratory assays, but uses reagents that require refrigeration and inherently requires multiple assay steps not normally compatible with POC settings. Enzyme-based signal amplification, such as the one used in ELISA, could greatly improve the limit of detection if it were translated to a format compatible with POC requirements. A signal-amplified POC device not only requires the reagents to be stored in a stable form, but also requires automation of the multiple sequential steps of signal amplification protocols. Here, we describe a method for the long-term dry storage of ELISA reagents: horseradish peroxidase (HRP) conjugated antibody label and its colorimetric substrate diaminobenzidine (DAB). The HRP conjugate retained ∼80% enzymatic activity after dry storage at 45 °C for over 5 months. The DAB substrate was also stable at 45 °C and exhibited no detectable loss of activity over 3 months. These reagents were incorporated into a two-dimensional paper network (2DPN) device that automated the steps of ELISA for the detection of a malarial biomarker. These results demonstrate the potential of enzyme-based signal amplification for enhanced sensitivity in POC devices for low resource settings.


Lab on a Chip | 2012

Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards

Lisa Lafleur; Dean Y. Stevens; Katherine G. McKenzie; Paolo Spicar-Mihalic; Mitra Singhal; Amit Arjyal; Jennifer L. Osborn; Peter Kauffman; Paul Yager; Barry R. Lutz

In many low resource settings multiple diseases are endemic. There is a need for appropriate multi-analyte diagnostics capable of differentiating between diseases that cause similar clinical symptoms. The work presented here was part of a larger effort to develop a microfluidic point-of-care system, the DxBox, for sample-to-result differential diagnosis of infections that present with high rapid-onset fever. Here we describe a platform that detects disease-specific antigens and IgM antibodies. The disposable microfluidic cards are based on a flow-through membrane immunoassay carried out on porous nitrocellulose, which provides rapid diffusion for short assay times and a high surface area for visual detection of colored assay spots. Fluid motion and on-card valves were driven by a pneumatic system and we present designs for using pneumatic control to carry out assay functions. Pneumatic actuation, while having the potential advantage of inexpensive and robust hardware, introduced bubbles that interfered with fluidic control and affected assay results. The cards performed all sample preparation steps including plasma filtration from whole blood, sample and reagent aliquoting for the two parallel assays, sample dilution, and IgG removal for the IgM assays. We demonstrated the system for detection of the malarial pfHRPII antigen (spiked) and IgM antibodies to Salmonella Typhi LPS (patient plasma samples). All reagents were stored on card in dry form; only the sample and buffer were required to run the tests. Here we detail the development of this platform and discuss its strengths and weaknesses.

Collaboration


Dive into the Barry R. Lutz's collaboration.

Top Co-Authors

Avatar

Paul Yager

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Elain Fu

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Peter Kauffman

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Lisa Lafleur

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge