Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry S. Flinn is active.

Publication


Featured researches published by Barry S. Flinn.


Nature Genetics | 2011

The genome of woodland strawberry ( Fragaria vesca )

Vladimir Shulaev; Daniel J. Sargent; Ross N. Crowhurst; Todd C. Mockler; Otto Folkerts; Arthur L. Delcher; Pankaj Jaiswal; Keithanne Mockaitis; Aaron Liston; Shrinivasrao P. Mane; Paul D. Burns; Thomas M. Davis; Janet P. Slovin; Nahla Bassil; Roger P. Hellens; Clive Evans; Tim Harkins; Chinnappa D. Kodira; Brian Desany; Oswald Crasta; Roderick V. Jensen; Andrew C. Allan; Todd P. Michael; João C. Setubal; Jean Marc Celton; Kelly P. Williams; Sarah H. Holt; Juan Jairo Ruiz Rojas; Mithu Chatterjee; Bo Liu

The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.


Functional & Integrative Genomics | 2008

Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array

Bjorn Kloosterman; David De Koeyer; Rebecca Griffiths; Barry S. Flinn; Burkhard Steuernagel; Uwe Scholz; Sophia Sonnewald; Uwe Sonnewald; Glenn J. Bryan; Salomé Prat; Zsófia Bánfalvi; John P. Hammond; Peter Geigenberger; Ko̊re L. Nielsen; Richard G. F. Visser; Christian W. B. Bachem

The increasing amount of available expressed gene sequence data makes whole-transcriptome analysis of certain crop species possible. Potato currently has the second largest number of publicly available expressed sequence tag (EST) sequences among the Solanaceae. Most of these ESTs, plus other proprietary sequences, were combined and used to generate a unigene assembly. The set of 246,182 sequences produced 46,345 unigenes, which were used to design a 44K 60-mer oligo array (Potato Oligo Chip Initiative: POCI). In this study, we attempt to identify genes controlling and driving the process of tuber initiation and growth by implementing large-scale transcriptional changes using the newly developed POCI array. Major gene expression profiles could be identified exhibiting differential expression at key developmental stages. These profiles were associated with functional roles in cell division and growth. A subset of genes involved in the regulation of the cell cycle, based on their Gene Ontology classification, exhibit a clear transient upregulation at tuber onset indicating increased cell division during these stages. The POCI array allows the study of potato gene expression on a much broader level than previously possible and will greatly enhance analysis of transcriptional control mechanisms in a wide range of potato research areas. POCI sequence and annotation data are publicly available through the POCI database (http://pgrc.ipk-gatersleben.de/poci).


Recent Patents on Biotechnology | 2010

The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement

Chuansheng Mei; Barry S. Flinn

Endophytes are microorganisms that live within host plants for at least part of their life and do not cause apparent symptoms of diseases. In general, beneficial endophytes promote host plant growth, increase plant nutrient uptake, inhibit plant pathogen growth, reduce disease severity, and enhance tolerance to environmental stresses. As sustainable and renewable agricultural production (including current biofuel and bioenergy crops) increases in prominence, endophytic microorganisms will play important roles and offer environmentally-friendly methods to increase productivity while reducing chemical inputs. This review discusses various aspects of beneficial fungal and bacterial endophyte interactions with plants, including the physiological and molecular mechanisms by which they benefit plant performance. We also discuss the potential for genetic modification of endophytes with useful genes, which could be used to impart additional traits following inoculation with the genetically engineered endophytes. Finally, we review US-issued patents over the past decade which relate to the use of fungal and bacterial endophytes for plant growth and stress tolerance improvement.


Biotechnology for Biofuels | 2012

Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

Seonhwa Kim; Scott Lowman; Guichuan Hou; Jerzy Nowak; Barry S. Flinn; Chuansheng Mei

BackgroundSwitchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes.ResultsWe demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific.ConclusionsOur results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions, indicating that the use of the beneficial bacterial endophytes may boost switchgrass growth on marginal lands and significantly contribute to the development of a low input and sustainable feedstock production system.


Plant Cell Reports | 1989

Transformation of white spruce and other conifer species byAgrobacterium tumefaciens.

David D. Ellis; Dane R. Roberts; Ben C. S. Sutton; Wayne R. Lazaroff; David T. Webb; Barry S. Flinn

Studies of the ability ofAgrobacterium to transform white spruce (Picea glauca), Engelmann spruce (P. engelmanni), Sitka spruce (P. sitchensis) and Douglas-fir (Pseudotsuga menziesii) showed frequencies of gall formation from 0–80% depending upon the strain ofAgrobacterium, and the conifer species. Thirty sixA. tumefaciens strains and oneA. rhizogenes strain were tested on 6 month old white spruce seedlings. NineA. tumefaciens strains induced gall formation on more than 50% of the inoculated trees and at greater than 10% of the inoculated sites. One strain, B2/74 gave rise to galls at 28% of the inoculated sites on white spruce and induced the highest overall frequency of gall formation on all the conifer species tested. Relative frequency of gall formation was consistent among species, although the overall frequency was much higher on Douglas-fir. Of the well characterized strains for which disarmed derivatives are available only A281 (carrying the supervirulent tumor inducing plasmid, pTiBo542) gave efficient transformation. Stable integration of T-DNA encoded genes has been confirmed by the expression of opine synthesis and hormone autonomous growth. The transfer and long-term stable expression of kanamycin resistance and firefly luciferase activity using binary vector systems was also achieved.


Plant Molecular Biology | 2005

Potato Expressed Sequence Tag Generation and Analysis using Standard and Unique cDNA Libraries

Barry S. Flinn; Charlotte Rothwell; Rebecca Griffiths; Martin Lagüe; David DeKoeyer; Ravinder Sardana; Patrice Audy; Claudia Goyer; Xiu-Qing Li; Gefu Wang-Pruski; Sharon Regan

To help develop an understanding of the genes that govern the developmental characteristics of the potato (Solanum tuberosum), as well as the genes associated with responses to specified pathogens and storage conditions, The Canadian Potato Genome Project (CPGP) carried out 5′ end sequencing of regular, normalized and full-length cDNA libraries of the Shepody potato cultivar, generating over 66,600 expressed sequence tags (ESTs). Libraries sequenced represented tuber developmental stages, pathogen-challenged tubers, as well as leaf, floral developmental stages, suspension cultured cells and roots. All libraries analysed to date have contributed unique sequences, with the normalized libraries high on the list. In addition, a low molecular weight library has enhanced the 3′ ends of our sequence assemblies. Using the combined assembly dataset, unique tuber developmental, cold storage and pathogen-challenged sequences have been identified. A comparison of the ESTs specific to the pathogen-challenged tuber and foliar libraries revealed minimal overlap between these libraries. Mixed assemblies using over 189,000 potato EST sequences from CPGP and The Institute for Genomics Research (TIGR) has revealed common sequences, as well as CPGP- and TIGR-unique sequences.


Plant Cell Reports | 1989

Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis

Dane R. Roberts; Barry S. Flinn; David T. Webb; Fiona B. Webster; Ben C. S. Sutton

SDS-PAGE analysis of total proteins from cotyledonary embryo explants reveals that their competence to form somatic embryos is limited to a specific stage of development prior to the accumulation of storage proteins. When protein profiles of embryo explants of different open pollinated families from the same collection date are compared, there is a close relationship between the absence of storage proteins and their ability to produce embryogenic callus. In addition, the appearance of storage proteins in embryos from subsequent collections is associated with their loss of competence. Light microscopy combined with staining for total protein demonstrates that competent immature embryos have cotyledons but do not contain protein bodies.


Plant Molecular Biology | 1992

Vicilin-like seed storage proteins in the gymnosperm interior spruce (Picea glauca/engelmanii)

Craig H. Newton; Barry S. Flinn; Benjamin Charles Sherbrooke Sutton

A seed storage protein cDNA was characterized from a library of interior spruce (Picea glauca/engelmanii complex) cotyledonary stage somatic embryos. The deduced amino acid sequence predicts a 448 amino acid (50 kDa) polypeptide with 28–38% identity with angiosperm vicilin-like 7S globulins. XXC/G codon usage is low (47%) relative to monocot angiosperms while pairwise comparisons show that spruce, monocot, and dicot vicilins are approximately equal in amino acid divergence. Although small by comparison, the spruce vicilin contains an N terminal hydrophilic region characteristic of angiosperm ‘large’ vicilins. Genomic Southern blotting predicts that the cDNA is encoded by a gene family.


Functional Plant Biology | 2008

Plant extracellular matrix metalloproteinases

Barry S. Flinn

The plant extracellular matrix (ECM) includes a variety of proteins with critical roles in the regulation of plant growth, development, and responses to pests and pathogens. Several studies have shown that various ECM proteins undergo proteolytic modification. In mammals, the extracellular matrix metalloproteinases (MMPs) are known modifiers of the ECM, implicated in tissue architecture changes and the release of biologically active and/or signalling molecules. Although plant MMPs have been identified, little is known about their activity and function. Plant MMPs show structural similarity to mammalian MMPs, including the presence of an auto-regulatory cysteine switch domain and a zinc-binding catalytic domain. Plant MMPs are differentially expressed in cells and tissues during plant growth and development, as well as in response to several biotic and abiotic stresses. The few gene expression and mutant analyses to date indicate their involvement in plant growth, morphogenesis, senescence and adaptation and response to stress. In order to gain a further understanding of their function, an analysis and characterisation of MMP proteins, their activity and their substrates during plant growth and development are still required. This review describes plant MMP work to date, as well as the variety of genomic and proteomic methodologies available to characterise plant MMP activity, function and potential substrates.


Tree Physiology | 2011

Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa pine (Pinus oocarpa Schiede ex Schlectendal)

Alejandra Lara-Chavez; Barry S. Flinn; Ulrika Egertsdotter

The focus of the current project was to establish somatic embryogenesis protocols for the tropical pine species Pinus oocarpa using immature zygotic embryos (ZEs) as explants. Somatic embryogenesis is best supported by mimicking natural seed-embryo developmental conditions, through a tissue culture medium formulation based on the mineral content of the seed nutritive tissue [megagametophyte (MG)]. A novel culture medium (P. oocarpa medium, PO) was tested in combination with different plant growth regulator (PGR) concentrations and compared with standard Pinus taeda media for the initiation of somatic embryogenesis from immature ZEs of P. oocarpa. Immature MGs containing immature ZEs of two mother trees were used with 12 and 8% extrusion rates for mother tree genotypes 3 and 5, respectively. In both mother trees the percentage capture was 2%. Multiplication of two captured cell lines (T5C2S01 and T5C1S12) was improved by lowering the concentrations of PGRs to 2.5 µM each 2,4-dichlorophenoxyacetic acid and abscisic acid (ABA) plus 1.0 µM each 6-benzylaminopurine and kinetin. Mature somatic embryos formed on 40 µM ABA, 6% (w/v) maltose, 12% (w/v) PEG 8000 and 0.6% (w/v) Phytagel. While PO medium appeared suboptimal for somatic embryo induction, it did exhibit potential for enhanced culture proliferation and subsequent improved maturation with cell line T5C2S01, where microscopic analysis revealed better embryo morphology on PO medium than on 1250 medium. However, this enhancement was not observed with cell line T5C1S12. Germination was preceded by partial desiccation for a period of 2-3 weeks before transferring the embryos to germination medium. Germination was observed after 7 days under low light, and apical primordia slowly expanded after transfer to ex vitro conditions. To our knowledge, this is the first report on the production of somatic seedlings in P. oocarpa.

Collaboration


Dive into the Barry S. Flinn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gefu Wang-Pruski

Nova Scotia Agricultural College

View shared research outputs
Top Co-Authors

Avatar

Xiu-Qing Li

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bipasha Chakravarty

Nova Scotia Agricultural College

View shared research outputs
Top Co-Authors

Avatar

David De Koeyer

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge