Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry Weinberger is active.

Publication


Featured researches published by Barry Weinberger.


Journal of Leukocyte Biology | 2001

Functional heterogeneity in liver and lung macrophages

Debra L. Laskin; Barry Weinberger; Jeffrey D. Laskin

Although initially considered merely “scavenger cells” that participate in immunologic responses only after B and T lymphocytes have performed their biological tasks, more recent evidence suggests that macrophages play a key role in host defense as well as in the maintenance of normal tissue structure and function. For macrophages to perform their biological functions, they must be activated. This involves up‐regulation of an array of signaling pathways resulting in altered gene expression and increased biochemical and functional activity. Macrophages have been identified in almost all tissues of the body. However, the basal activity of these cells, as well as their ability to respond to inflammatory mediators, varies considerably with their location. In addition, even within a particular tissue, there is evidence of macrophage heterogeneity. The largest populations of macrophages in the body are located in the liver and lung. Because of the unique attributes of these tissues, hepatic and pulmonary macrophages play essential roles not only in nonspecific host defense but also in the homeostatic responses of these tissues. In this review, the functional and biochemical activities of macrophages localized in the liver and lungs are compared. Evidence suggests that these represent distinct cell populations with unique functions and responsiveness to inflammatory agents.


American Journal of Reproductive Immunology | 2006

Evidence for Interleukin-10-Mediated Inhibition of Cyclo- oxygenase-2 Expression and Prostaglandin Production in Preterm Human Placenta

Nazeeh Hanna; Lea Bonifacio; Barry Weinberger; Pradeep Reddy; Shaun Murphy; Roberto Romero; Surendra Sharma

Problem  Interleukin‐10 (IL‐10) is thought to be a key cytokine for the maintenance of pregnancy. Here we examined the expression profiles of IL‐10 and cyclo‐oxygenase‐2 (COX‐2), and the effect of IL‐10 on COX‐2 expression and prostaglandin release in the human placenta from preterm labor deliveries associated with chorioamnionitis.


Pulmonary Pharmacology & Therapeutics | 2011

SULFUR MUSTARD-INDUCED PULMONARY INJURY: THERAPEUTIC APPROACHES TO MITIGATING TOXICITY

Barry Weinberger; Jeffrey D. Laskin; Vasanthi R. Sunil; Patrick J. Sinko; Diane E. Heck; Debra L. Laskin

Sulfur mustard (SM) is highly toxic to the lung inducing both acute and chronic effects including upper and lower obstructive disease, airway inflammation, and acute respiratory distress syndrome, and with time, tracheobronchial stenosis, bronchitis, and bronchiolitis obliterans. Thus it is essential to identify effective strategies to mitigate the toxicity of SM and related vesicants. Studies in animals and in cell culture models have identified key mechanistic pathways mediating their toxicity, which may be relevant targets for the development of countermeasures. For example, following SM poisoning, DNA damage, apoptosis, and autophagy are observed in the lung, along with increased expression of activated caspases and DNA repair enzymes, biochemical markers of these activities. This is associated with inflammatory cell accumulation in the respiratory tract and increased expression of tumor necrosis factor-α and other proinflammatory cytokines, as well as reactive oxygen and nitrogen species. Matrix metalloproteinases are also upregulated in the lung after SM exposure, which are thought to contribute to the detachment of epithelial cells from basement membranes and disruption of the pulmonary epithelial barrier. Findings that production of inflammatory mediators correlates directly with altered lung function suggests that they play a key role in toxicity. In this regard, specific therapeutic interventions currently under investigation include anti-inflammatory agents (e.g., steroids), antioxidants (e.g., tocopherols, melatonin, N-acetylcysteine, nitric oxide synthase inhibitors), protease inhibitors (e.g., doxycycline, aprotinin, ilomastat), surfactant replacement, and bronchodilators. Effective treatments may depend on the extent of lung injury and require a multi-faceted pharmacological approach.


Pharmacology & Therapeutics | 2001

Pharmacologic therapy of persistent pulmonary hypertension of the newborn.

Barry Weinberger; Kerry Weiss; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Persistent pulmonary hypertension of the newborn (PPHN) is a potentially life-threatening condition characterized by a failure of pulmonary vascular resistance to decrease adequately during the transition to extrauterine life. Inhaled nitric oxide, a vasodilator that acts selectively on the pulmonary circulation, has revolutionized the treatment of this condition. However, inhaled nitric oxide has not proven effective in all patients, particularly those with congenital diaphragmatic hernias or meconium aspiration syndrome. Furthermore, large clinical trials of inhaled nitric oxide have failed to demonstrate significant differences in mortality between nitric oxide-treated and control infants with PPHN. Other therapeutic approaches to PPHN have been limited by a relative lack of specificity for the pulmonary circulation, and have received much less attention. Pharmacologic approaches, including pulmonary surfactants, prostacyclin, endothelin antagonists, Ca(2+)-channel blockers, magnesium sulfate, and tolazoline, have exhibited varying degrees of efficacy in lowering pulmonary vascular pressures in humans and/or animals. A number of these agents are also effective when used in combination. For example, phosphodiesterase inhibitors have been reported to act synergistically with inhaled nitric oxide. Surfactants also appear to be useful in PPHN, particularly in patients with congenital diaphragmatic hernia, when used in combination with other therapies. Surfactant lavage and other novel therapies may also be effective in combination therapy of meconium aspiration syndrome. Further studies should be directed at defining the optimal therapies in specific clinical settings. Validation of multiple therapeutic modalities for PPHN, including inhaled nitric oxide, will allow for rational, combined vasodilator strategies that are specific for the underlying pathophysiology in each patient.


Pharmacology & Therapeutics | 1999

Nitric oxide in the lung: therapeutic and cellular mechanisms of action.

Barry Weinberger; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Nitric oxide is produced by many cell types in the lung and plays an important physiologic role in the regulation of pulmonary vasomotor tone by several known mechanisms. Nitric oxide stimulates soluble guanylyl cyclase, resulting in increased levels of cyclic GMP in lung smooth muscle cells. The gating of K+ and Ca2+ channels by cyclic GMP binding is thought to play a role in nitric oxide-mediated vasodilation. Nitric oxide may also regulate pulmonary vasodilation by direct activation of K+ channels or by modulating the expression and activity of angiotensin II receptors. Administration of nitric oxide by inhalation has been shown to acutely improve hypoxemia associated with pulmonary hypertension in humans and animals. This is presumably due to its ability to induce pulmonary vasodilation. Inhaled nitric oxide improves oxygenation and reduces the need for extracorporeal membrane oxygenation in term and near-term infants with persistent pulmonary hypertension. However, long-term benefits to these infants have been difficult to demonstrate. In other pathologic conditions, such as prematurity and acute respiratory distress syndrome, short-term benefits have not been shown conclusively to outweigh potential toxicities. For example, high-dose inhaled nitric oxide decreases surfactant function in the lung. Inhaled nitric oxide also acts as a pulmonary irritant, causing priming of lung macrophages and oxidative damage to lung epithelial cells. Conversely, protective effects of nitric oxide have been described in a number of pathological states, including hyperoxic and ischemia/reperfusion injury. Nitric oxide has also been reported to protect against oxidative damage induced by other reactive intermediates, including superoxide anion and hydroxyl radical. The dose and timing of nitric oxide administration needs to be ascertained in clinical trials before recommendations can be made regarding its optimal use in patients.


Environmental Health Perspectives | 2015

Differences in Birth Weight Associated with the 2008 Beijing Olympics Air Pollution Reduction: Results from a Natural Experiment.

David Q. Rich; Kaibo Liu; Jinliang Zhang; Sally W. Thurston; Timothy P. Stevens; Ying Pan; Cathleen Kane; Barry Weinberger; Pamela Ohman-Strickland; Tracey J. Woodruff; Xiaoli Duan; Vanessa Assibey-Mensah; Junfeng Zhang

Background Previous studies have reported decreased birth weight associated with increased air pollutant concentrations during pregnancy. However, it is not clear when during pregnancy increases in air pollution are associated with the largest differences in birth weight. Objectives Using the natural experiment of air pollution declines during the 2008 Beijing Olympics, we evaluated whether having specific months of pregnancy (i.e., 1st…8th) during the 2008 Olympics period was associated with larger birth weights, compared with pregnancies during the same dates in 2007 or 2009. Methods Using n = 83,672 term births to mothers residing in four urban districts of Beijing, we estimated the difference in birth weight associated with having individual months of pregnancy during the 2008 Olympics (8 August–24 September 2008) compared with the same dates in 2007 and 2009. We also estimated the difference in birth weight associated with interquartile range (IQR) increases in mean ambient particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) concentrations during each pregnancy month. Results Babies whose 8th month of gestation occurred during the 2008 Olympics were, on average, 23 g larger (95% CI: 5 g, 40 g) than babies whose 8th month occurred during the same calendar dates in 2007 or 2009. IQR increases in PM2.5 (19.8 μg/m3), CO (0.3 ppm), SO2 (1.8 ppb), and NO2 (13.6 ppb) concentrations during the 8th month of pregnancy were associated with 18 g (95% CI: –32 g, –3 g), 17 g (95% CI: –28 g, –6 g), 23 g (95% CI: –36 g, –10 g), and 34 g (95% CI: –70 g, 3 g) decreases in birth weight, respectively. We did not see significant associations for months 1–7. Conclusions Short-term decreases in air pollution late in pregnancy in Beijing during the 2008 Summer Olympics, a normally heavily polluted city, were associated with higher birth weight. Citation Rich DQ, Liu K, Zhang J, Thurston SW, Stevens TP, Pan Y, Kane C, Weinberger B, Ohman-Strickland P, Woodruff TJ, Duan X, Assibey-Mensah V, Zhang J. 2015. Differences in birth weight associated with the 2008 Beijing Olympics air pollution reduction: results from a natural experiment. Environ Health Perspect 123:880–887; http://dx.doi.org/10.1289/ehp.1408795


Pediatric Research | 2005

Mechanisms underlying reduced apoptosis in neonatal neutrophils.

Nazeeh Hanna; Pedro Vasquez; Petra Pham; Diane E. Heck; Jeffrey D. Laskin; Debra L. Laskin; Barry Weinberger

Apoptosis, which leads to phagocytosis by mononuclear cells, represents the primary mechanism for removing neutrophils from inflamed tissues and minimizing injury. The present studies show that membrane phosphatidylserine turnover and permeability, as well as DNA fragmentation, were reduced in neutrophils from neonates when compared with adults. The activity of caspase 3 and expression of the proapoptotic proteins Bax, Bad, and Bak were also decreased in neonatal relative to adult neutrophils. These findings are consistent with impaired apoptosis in neonatal cells, which may contribute to prolonged inflammation in infants after oxidative stress or infection. Neutrophil apoptosis is induced by endogenous ligands such as Fas (FasL), which engage death receptors of the tumor necrosis factor/nerve growth factor superfamily, including Fas receptor (FasR). We found that expression of FasR was decreased in neonatal when compared with adult cells. Moreover, neonatal neutrophils did not undergo apoptosis in response to anti-FasR antibody and exhibited impaired chemotaxis to soluble FasL. However, in both adult and neonatal cells, p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase inhibitors blocked Fas-induced activity. These data suggest that prolonged survival of neonatal neutrophils at injured sites is due, in part, to reduced responsiveness to FasL. This may be related to decreased expression of both FasR and Bcl-2–family proteins that mediate neutrophil apoptosis.


Pediatrics International | 2006

Lipid peroxidation in cord blood and neonatal outcome

Barry Weinberger; Salman Nisar; Mujahid Anwar; Barbara Ostfeld; Thomas Hegyi

Background: Periventricular–intraventricular hemorrhage, necrotizing enterocolitis, chronic lung disease and retinopathy of prematurity have been referred to as oxygen radical diseases (ORD) because they are thought to be related to excess oxidant stress relative to anti‐oxidant defenses in premature infants. 8‐Isoprostane is a product of lipid peroxidation that can be used as a measure of free radical exposure or injury. The aim of the present study was to determine whether fetal oxidant stress is associated with adverse effects in preterm infants.


Journal of Maternal-fetal & Neonatal Medicine | 2014

Effects of maternal exposure to phthalates and bisphenol A during pregnancy on gestational age

Barry Weinberger; Anna M. Vetrano; Faith Archer; Stephen Marcella; Brian Buckley; Daniel Wartenberg; Mark G. Robson; Jammie Klim; Sana Azhar; Sarah Cavin; Lu Wang; David Q. Rich

Abstract Objective: Phthalates and bisphenol A (BPA) are ubiquitous environmental toxicants, present in high concentrations in numerous consumer products. We hypothesized that maternal exposure to phthalates and BPA in pregnancy is associated with shortened gestation. Methods: Urinary phthalate and BPA metabolites from 72 pregnant women were measured at the last obstetric clinic visit prior to delivery. Using linear regression models, we estimated the change in gestational age associated with each interquartile range (IQR) increase in phthalate and BPA metabolite concentration. Results: IQR increases in urinary mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and BPA concentrations were associated with 4.2 and 1.1 d decreases in gestation, respectively. When stratified by gender, these alterations were found only in male infants. Conclusions: We conclude that MEHHP and BPA (free + glucuronide) are associated with reductions in gestation, with effects observed only in males. Our findings are consistent with the idea that these agents induce gender-specific alterations in signaling via PPAR-γ transcription factor, androgen precursors and/or inflammatory mediators during the initiation of labor.


Pediatric Research | 2010

Inflammatory Effects of Phthalates in Neonatal Neutrophils

Anna M. Vetrano; Debra L. Laskin; Faith Archer; Kirin Syed; Joshua P. Gray; Jeffrey D. Laskin; Nkiru Nwebube; Barry Weinberger

Hospitalized infants are exposed to numerous devices containing the plasticizer di-(2-ethylhexyl) phthalate. Urinary levels of the phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), are markedly elevated in premature infants. Phthalates inactivate peroxisome proliferator-activated receptor-γ (PPAR-γ), a nuclear transcription factor that mediates the resolution of inflammation, a process impaired in neonates. We speculate that this increases their susceptibility to MEHP, and this was analyzed. MEHP inhibited neutrophil apoptosis; neonatal cells were more sensitive than adult cells. In neonatal, but not in adult neutrophils, MEHP also inhibited chemotaxis, stimulated oxidative metabolism, and up-regulated expression of NADPH oxidase-1. In both adult and neonatal neutrophils, MEHP stimulated IL-1β and VEGF production, whereas IL-8 production was stimulated only in adult cells. In contrast, MEHP-inhibited production of MIP-1β by adult cells, and Regulated on Activation Normal T Cell Expressed and Secreted (RANTES) by neonatal neutrophils. The effects of MEHP on apoptosis and oxidative metabolism in neonatal cells were reversed by the PPAR-γ agonist, troglitazone. Whereas troglitazone had no effect on MEHP-induced alterations in inflammatory protein or chemokine production, constitutive IL-8 and MIP-1β production was reduced in adult neutrophils, and RANTES and MIP-1β in neonatal cells. These findings suggest that neonatal neutrophils are more sensitive to phthalate-mediated inhibition of PPAR-γ, which may be related to decreased anti-inflammatory signaling.

Collaboration


Dive into the Barry Weinberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane E. Heck

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nazeeh Hanna

Winthrop-University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge