Bart A. J. Noordover
Eindhoven University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bart A. J. Noordover.
Macromolecular Rapid Communications | 2011
Donglin Tang; Dirk-Jan Mulder; Bart A. J. Noordover; Ce Cor Koning
Via an isocyanate-free route, a series of segmented polyureas (PUs) were synthesized from (potentially) renewable resources. To the best of our knowledge, the present work shows for the first time that the organic superbase guanidine 1,5,7-triazabicyclododecene (TBD) which was originally developed as a catalyst for the ring-opening polymerization of lactones, lactides or cyclic carbonates, is also a promising catalyst for the transurethanization between dicarbamates and diamino-terminated poly(propylene glycol) (PPGda) providing PUs via an isocyanate-free strategy. The renewable segmented PUs contain monodisperse hard segments (HSs). This well-defined structure was verified by the DMTA plots of the PUs, showing a sharp glass transition, a sharp flow transition and a flat rubbery plateau. The flow and maximum use temperature (Tfl ) of the PUs increases with the increasing number of urea groups in the corresponding dicarbamates. In addition, at constant HS length, the length of the soft-segment (SS) can be changed to adjust the properties of the PU materials, enabling their application as adhesives, soft elastomers, or rigid plastics.
Chemsuschem | 2015
Jing Wu; Pieter Eduard; Shanmugam Thiyagarajan; Bart A. J. Noordover; Daan S. van Es; Ce Cor Koning
New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers.
Green Chemistry | 2014
Cristina Lavilla; Erik Gubbels; Abdelilah Alla; Antxon Martínez de Ilarduya; Bart A. J. Noordover; Ce Cor Koning; Sebastián Muñoz-Guerra
2,3-O-Methylene-L-threitol (Thx) is a cyclic carbohydrate-based diol prepared by acetalization and subsequent reduction of the naturally occurring tartaric acid. The structure of Thx consists of a 1,3-dioxolane ring with two attached primary hydroxyl groups. Two series of partially bio-based poly(butylene terephthalate) (PBT) copolyesters were prepared using Thx as a comonomer by melt polycondensation (MP) and solid-state modification (SSM). Fully random copolyesters were obtained after MP using mixtures of Thx and 1,4-butanediol in combination with dimethyl terephthalate. Copolyesters with a unique block-like chemical microstructure were prepared by the incorporation of Thx into the amorphous phase of PBT by SSM. The partial replacement of the 1,4-butanediol units by Thx resulted in satisfactory thermal stabilities and gave rise to an increase of the Tg values, this effect was comparable for copolyesters prepared by MP and SSM. The partially bio-based materials prepared by SSM displayed higher melting points and easier crystallization from the melt, due to the presence of long PBT sequences in the backbone of the copolyester. The incorporation of Thx in the copolyester backbone enhanced the hydrolytic degradation of the materials with respect to the degradation of pure PBT.
Macromolecular Rapid Communications | 2014
Ioannis Manolakis; Bart A. J. Noordover; Richard Vendamme; Walter Eevers
The synthesis, characterization, and testing of a range of novel bio-inspired L-DOPA-derived poly(ester amide)s is presented, using a widely applicable, straightforward chemistry. A model system is used to study and establish the monomer and polymer synthetic protocols, and to provide a set of optimum reaction conditions. It is further shown that fully biobased L-DOPA-containing adhesive tapes can be fabricated, which are positively evaluated in terms of their adhesive properties. The newly developed synthetic protocol constitutes a versatile platform for accessing and tailoring a plethora of relevant structures, including a variety of potentially biocompatible poly(ethylene glycol)-based materials.
Polymer Chemistry | 2015
Carolus H. R. M. Wilsens; Nino J. M. Wullems; Erik Gubbels; Yefen Yao; Sanjay Rastogi; Bart A. J. Noordover
The synthesis of renewable 2,5-furandicarboxylic acid-based cross-linked poly(ester amide)s via the polymerization of a 2,5-furandicarboxylic acid based bis(2-oxazoline) monomer (2,5-bis(4,5-dihydrooxazol-2-yl)furan, 2,5-FDCAox) with sebacic acid is reported in this work. It is demonstrated that the amide groups in the 2,5-furandicarboxamide moiety are susceptible to participation in a branching reaction with 2-oxazoline rings. The corresponding enhanced reaction rate decreases the curing times for the preparation of cross-linked polymers compared to systems containing the isophthalic acid based alternative, 1,3-bis(4,5-dihydrooxazol-2-yl)benzene (IAox). The increased tendency to form branches or cross-links in 2,5-FDCAox based systems is attributed to the occurrence of intra-molecular hydrogen bonding of the 2,5-furandicarboxamide moiety. Such an intra-molecular hydrogen bond increases the nucleophilicity of the furanic amide group and makes it more susceptible to participation in an addition reaction with a 2-oxazoline ring. Furthermore, it is demonstrated that the rate of the branching reaction can be enhanced by the addition of triphenyl phosphite as catalyst, resulting in a further decrease of the curing times of the poly(ester amide)s synthesized in this study. Preliminary coating studies indicate that 2,5-furandicarboxylic acid based cross-linked poly(ester amide)s synthesized via the 2-oxazoline ring opening addition reactions with dicarboxylic acids are good candidates for the development of fully renewable cross-linked poly(ester amide)s.
RSC Advances | 2014
A. Catarina C. Esteves; I. Doğan Günbas; Jan M. van Riel; Bart A. J. Noordover; Rolf A. T. M. van Benthem
Polymer surfaces can be designed to have functionalities significantly different from the bulk. However, such surfaces can be very dynamic in nature and rapidly rearrange or exchange with bulk components upon changing environmental conditions or contacts. The time-frames involved in surface rearrangements of polymer films are investigated by Dynamic Recovery Contact Angle (DRCA) through a simple, non-invasive and reconstructive approach, based on the sequential exchange of the polymer surface contact between a probe liquid (water) and air.
Journal of Renewable Materials | 2013
Donglin Tang; Shanmugam Thiyagarajan; Bart A. J. Noordover; Ce Cor Koning; Daan S. van Es; Jacco van Haveren
A series of fully renewable poly(ester urethane urea)s (PEUs) were synthesized from bio-based starting materials, e.g., the polyester diol, the diisocyanates including L-lysine diisocyanate (LDI) and isoidide diisocyanate (IIDI), the chain-extenders including 1,4-diaminobutane (bDA), diaminoisoidide (iDA) and di(aminobutyl) urea (b2DA). It is found that the PEU based on the novel diisocyanate, IIDI, exhibits satisfactory thermal and mechanical properties. The LDI-based PEUs show less favorable thermal and mechanical properties than the IIDI-based counterpart, since the chemical structure of LDI is less regular than that of IIDI. However, by introducing a urea-containing dimeric diamine (b2DA) instead of the monomeric diamines, the properties of the LDI-based PEU can be improved significantly. For instance, the flow temperature increases 100°C and the E-modulus also increases from 1 MPa to approximately 20 MPa. These fully renewable PEUs seem to be interesting materials and they can potentially be used in biomedical or packaging applications.
Archive | 2012
Bart A. J. Noordover; Lidia Jasinska-Walc; Inge van der Meulen; Robbert Duchateau; Ce Cor Koning
A wide range of polymers were prepared from biomass-derivatives, using different polymerization mechanisms. Well-defined, fully hydroxy-functional polyesters based on aliphatic diols were synthesized, using either conventional metal-based catalysts or the organic superbase 1,5,7-triazabicyclododecene (TBD). Unsaturated polyesters were also made, offering additional functionality to these biobased resins. Metal-catalyzed or enzymatic ring-opening polymerization of macrolactones afford novel, renewable materials with good mechanical properties similar to those of polyethylene. In addition to polyesters, aliphatic polycarbonates based on 1,4:3,6-dianhydrohexitols (DAH) were prepared, which proved very suitable for application in thermosetting coating systems. Polyamides from sebacic acid, 1,4-diaminobutane and diaminoisoidide are very interesting polymers, in which the diaminoisoidide residues cocrystallize in the polyamide 4.10 matrix. Another type of polymers studied were the polyurethanes. Thermoplastic polyurethanes and polyureas from biomass can be effectively synthesized through either isocyanate-based or isocyanate-free strategies. Also, poly(ester/carbonate urethane) networks from renewable polymer resins are very promising systems for coating applications. The chemical, thermal and mechanical properties of the mentioned biobased polymers could be tuned by varying the molecular structure, the composition, the end-group functionality and the molecular weight.
Chemsuschem | 2018
Shuang Ma; Ellen P. A. van Heeswijk; Bart A. J. Noordover; Rj Rafaël Sablong; Rolf A. T. M. van Benthem; Ce Cor Koning
Here, an isocyanate-free approach to produce polyureas from diamines and dicarbamates as monomers is reported. A side reaction limiting the molecular weight during the diamine/ dicarbamate polymerization, that is, N-alkylation of amine end groups, is investigated. Mitigation of the N-alkylation, either by enhancing the carbamate aminolysis rate or by substitution of dimethylcarbamates with more sterically hindered diethylcarbamates, affords polyureas with sufficiently high molecular weights to assure satisfactory mechanical properties. Stable polyurea dispersions with polyamines as internal dispersing agents are prepared, and the properties of the corresponding coatings are evaluated.
Chemsuschem | 2017
Jing Wu; Shanmugam Thiyagarajan; Célia Fonseca Guerra; Pieter Eduard; Martin Lutz; Bart A. J. Noordover; Ce Cor Koning; Daan S. van Es
Building blocks of isohexides extended by one carbon atom at the 2- or 5-positions are now synthetically accessible by a convenient, selective, base-catalyzed epimerization of the corresponding dinitriles. Kinetic experiments using the strong organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) show that all three possible isohexide dinitrile isomers exist within a dynamic equilibrium. An epimerization mechanism based on density functional theory (DFT) calculations is proposed. Structural identification of all three possible isomers is based on NMR analysis and single crystal x-ray crystallography. DFT calculations confirm that the observed crystal structures are indeed the lowest energy conformers of these isohexide derivatives.