Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart A. Nolet is active.

Publication


Featured researches published by Bart A. Nolet.


Aquatic Ecology | 2005

The impact of climate change on lakes in the Netherlands: a review

Wolf M. Mooij; Stephan Hülsmann; Lisette N. de Senerpont Domis; Bart A. Nolet; Paul L. E. Bodelier; Paul C. M. Boers; L. Miguel Dionisio Pires; Herman J. Gons; B.W. Ibelings; Ruurd Noordhuis; Rob Portielje; Kirsten Wolfstein; Eddy H. R. R. Lammens

Climate change will alter freshwater ecosystems but specific effects will vary among regions and the type of water body. Here, we give an integrative review of the observed and predicted impacts of climate change on shallow lakes in the Netherlands and put these impacts in an international perspective. Most of these lakes are man-made and have preset water levels and poorly developed littoral zones. Relevant climatic factors for these ecosystems are temperature, ice-cover and wind. Secondary factors affected by climate include nutrient loading, residence time and water levels. We reviewed the relevant literature in order to assess the impact of climate change on these lakes. We focussed on six management objectives as bioindicators for the functioning of these ecosystems: target species, nuisance species, invading species, transparency, carrying capacity and biodiversity. We conclude that climate change will likely (i) reduce the numbers of several target species of birds; (ii) favour and stabilize cyanobacterial dominance in phytoplankton communities; (iii) cause more serious incidents of botulism among waterfowl and enhance the spreading of mosquito borne diseases; (iv) benefit invaders originating from the Ponto-Caspian region; (v) stabilize turbid, phytoplankton-dominated systems, thus counteracting restoration measures; (vi) destabilize macrophyte-dominated clear-water lakes; (vii) increase the carrying capacity of primary producers, especially phytoplankton, thus mimicking eutrophication; (viii) affect higher trophic levels as a result of enhanced primary production; (ix) have a negative impact on biodiversity which is linked to the clear water state; (x) affect biodiversity by changing the disturbance regime. Water managers can counteract these developments by reduction of nutrient loading, development of the littoral zone, compartmentalization of lakes and fisheries management.


Science | 2011

Levy walks evolve through interaction between movement and environmental complexity

Monique de Jager; Franz J. Weissing; P.M.J. Herman; Bart A. Nolet; Johan van de Koppel

Animals’ movements may not only respond to the environment, but may also shape it, and thus affect fitness. Ecological theory predicts that animal movement is shaped by its efficiency of resource acquisition. Focusing solely on efficiency, however, ignores the fact that animal activity can affect resource availability and distribution. Here, we show that feedback between individual behavior and environmental complexity can explain movement strategies in mussels. Specifically, experiments show that mussels use a Lévy walk during the formation of spatially patterned beds, and models reveal that this Lévy movement accelerates pattern formation. The emergent patterning in mussel beds, in turn, improves individual fitness. These results suggest that Lévy walks evolved as a result of the selective advantage conferred by autonomously generated, emergent spatial patterns in mussel beds. Our results emphasize that an interaction between individual selection and habitat complexity shapes animal movement in natural systems.


Acta Oecologica-international Journal of Ecology | 2002

Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe—a critical review of possibilities and limitations

Preben Clausen; Bart A. Nolet; Anthony D. Fox; Marcel Klaassen

We review whether migratory Anatidae, i.e., swans, geese and ducks, could be acting as vectors for dispersal of Zostera, Ruppia and Potamogeton propagules by endozoochory (carrying seeds in their guts). We list six prerequisites that must all be fulfilled, if successful dispersal should occur. Several Anatidae species feed on these macrophytes, and undertake rapid long-distance movements, making dispersal possible. We identify four problems, which in combination leads us to conclude that long-distance dispersal events are likely to be rare. (i) Most long-distance movements are out of phase with the reproductive efforts of the plants, and if birds arrive at sites when plants still bear seeds, they are likely to depart well after seed stocks have been depleted. (ii) Seed transport by birds will usually be uni-directional, from north to south on autumn migrations. (iii) Most of the gut contents of migratory birds are likely to have been discarded within 300 km of departure. (iv) In many cases, birds will arrive in habitats seriously different from those they departed, i.e., any seeds carried along will have low chances of surviving in their new site. We suggest that northbound dispersal by endozoochory can only occur during spring if waterbirds feed on seeds that have not been depleted and remained frozen down or buried in sediments, or during moult- or post-moult migrations. Moult migration takes place in summer in phase with the reproductive efforts of the plants. Also epizoochorous dispersal (external attachment) is subject to restrictions i, ii and iv.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

The effect of personality on social foraging: shy barnacle geese scrounge more

Ralf H. J. M. Kurvers; Herbert H. T. Prins; S.E. van Wieren; K. van Oers; Bart A. Nolet; Ronald C. Ydenberg

Animals foraging in groups can either search for food themselves (producing) or search for the food discoveries of other individuals (scrounging). Tactic use in producer–scrounger games is partly flexible but individuals tend to show consistency in tactic use under different conditions suggesting that personality might play a role in tactic use in producer–scrounger games. Here we studied the use of producing and scrounging tactics by bold and shy barnacle geese (Branta leucopsis), where boldness is a personality trait known to be repeatable over time in this species. We defined individuals as bold, shy or intermediate based on two novel object tests. We scored the frequency of finding food patches (the outcome of investing in producing) and joining patches (the outcome of investing in scrounging) by bold and shy individuals and their feeding time. Shy individuals had a higher frequency of joining than bold individuals, demonstrating for the first time that personality is associated with tactic use in a producer–scrounger game. Bold individuals tended to spend more time feeding than shy individuals. Our results highlight the importance of including individual behavioural variation in models of producer–scrounger games.


Ecology Letters | 2010

Personality predicts the use of social information

Ralf H. J. M. Kurvers; Kees van Oers; Bart A. Nolet; Rudy M. Jonker; Sipke E. van Wieren; Herbert H. T. Prins; Ronald C. Ydenberg

The use of social information is known to affect various important aspects of an individuals ecology, such as foraging, dispersal and space use and is generally assumed to be entirely flexible and context dependent. However, the potential link between personality differences and social information use has received little attention. In this study, we studied whether use of social information was related to personality, using barnacle geese, Branta leucopsis, where boldness is a personality trait known to be consistent over time. We found that the use of social information decreased with increasing boldness score of the individuals. Individuals had lower feeding times when they did not follow the social information and this effect was unrelated to boldness score. When manipulating social information, thereby making it incorrect, individuals irrespective of their boldness score, learned that it was incorrect and ignored it. Our results show that social information use depends on the personality type of an individual, which calls for incorporation of these personality-related differences in studies of spatial distribution of animals in which social information use plays a role.


Philosophical Transactions of the Royal Society B | 2012

Ecophysiology of avian migration in the face of current global hazards

Marcel Klaassen; Bethany J. Hoye; Bart A. Nolet; William A. Buttemer

Long-distance migratory birds are often considered extreme athletes, possessing a range of traits that approach the physiological limits of vertebrate design. In addition, their movements must be carefully timed to ensure that they obtain resources of sufficient quantity and quality to satisfy their high-energy needs. Migratory birds may therefore be particularly vulnerable to global change processes that are projected to alter the quality and quantity of resource availability. Because long-distance flight requires high and sustained aerobic capacity, even minor decreases in vitality can have large negative consequences for migrants. In the light of this, we assess how current global change processes may affect the ability of birds to meet the physiological demands of migration, and suggest areas where avian physiologists may help to identify potential hazards. Predicting the consequences of global change scenarios on migrant species requires (i) reconciliation of empirical and theoretical studies of avian flight physiology; (ii) an understanding of the effects of food quality, toxicants and disease on migrant performance; and (iii) mechanistic models that integrate abiotic and biotic factors to predict migratory behaviour. Critically, a multi-dimensional concept of vitality would greatly facilitate evaluation of the impact of various global change processes on the population dynamics of migratory birds.


Journal of Animal Ecology | 2014

Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus

Jacintha G. B. van Dijk; Bethany J. Hoye; Josanne H. Verhagen; Bart A. Nolet; Ron A. M. Fouchier; Marcel Klaassen

Similar to other infectious diseases, the prevalence of low pathogenic avian influenza viruses (LPAIV) has been seen to exhibit marked seasonal variation. However, mechanisms driving this variation in wild birds have yet to be tested. We investigated the validity of three previously suggested drivers for the seasonal dynamics in LPAIV infections in wild birds: (i) host density, (ii) immunologically naïve young and (iii) increased susceptibility in migrants. To address these questions, we sampled a key LPAIV host species, the mallard Anas platyrhynchos, on a small spatial scale, comprehensively throughout a complete annual cycle, measuring both current and past infection (i.e. viral and seroprevalence, respectively). We demonstrate a minor peak in LPAIV prevalence in summer, a dominant peak in autumn, during which half of the sampled population was infected, and no infections in spring. Seroprevalence of antibodies to a conserved gene segment of avian influenza virus (AIV) peaked in winter and again in spring. The summer peak of LPAIV prevalence coincided with the entrance of unfledged naïve young in the population. Moreover, juveniles were more likely to be infected, shed higher quantities of virus and were less likely to have detectable antibodies to AIV than adult birds. The arrival of migratory birds, as identified by stable hydrogen isotope analysis, appeared to drive the autumn peak in LPAIV infection, with both temporal coincidence and higher infection prevalence in migrants. Remarkably, seroprevalence in migrants was substantially lower than viral prevalence throughout autumn migration, further indicating that each wave of migrants amplified local AIV circulation. Finally, while host abundance increased throughout autumn, it peaked in winter, showing no direct correspondence with either of the LPAIV infection peaks. At an epidemiologically relevant spatial scale, we provide strong evidence for the role of migratory birds as key drivers for seasonal epizootics of LPAIV, regardless of their role as vectors of these viruses. This study exemplifies the importance of understanding host demography and migratory behaviour when examining seasonal drivers of infection in wildlife populations.


Eurosurveillance | 2015

Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways.

Josanne H. Verhagen; H.P. van der Jeugd; Bart A. Nolet; Roy Slaterus; S.P. Kharitonov; P.P. dede Vries; Oanh Vuong; Frank Majoor; Thijs Kuiken; Ron A. M. Fouchier

Highly pathogenic avian influenza (HPAI) A(H5N8) viruses that emerged in poultry in east Asia since 2010 spread to Europe and North America by late 2014. Despite detections in migrating birds, the role of free-living wild birds in the global dispersal of H5N8 virus is unclear. Here, wild bird sampling activities in response to the H5N8 virus outbreaks in poultry in the Netherlands are summarised along with a review on ring recoveries. HPAI H5N8 virus was detected exclusively in two samples from ducks of the Eurasian wigeon species, among 4,018 birds sampled within a three months period from mid-November 2014. The H5N8 viruses isolated from wild birds in the Netherlands were genetically closely related to and had the same gene constellation as H5N8 viruses detected elsewhere in Europe, in Asia and in North America, suggesting a common origin. Ring recoveries of migratory duck species from which H5N8 viruses have been isolated overall provide evidence for indirect migratory connections between East Asia and Western Europe and between East Asia and North America. This study is useful for better understanding the role of wild birds in the global epidemiology of H5N8 viruses. The need for sampling large numbers of wild birds for the detection of H5N8 virus and H5N8-virus-specific antibodies in a variety of species globally is highlighted, with specific emphasis in north-eastern Europe, Russia and northern China.


Ecology | 2006

Movement of foraging tundra swans explained by spatial pattern in cryptic food densities

Raymond H. G. Klaassen; Bart A. Nolet; Daniëlle Bankert

We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (<1 m) intra-patch movements alternate with longer inter-patch movements (>1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (<3 m), but not at a larger distance (3-8 m). Based on the spatial pattern of the food distribution (which is assumed to be pre-harvest information for the swan) and the energy costs and benefits for different food densities at various distances, we calculated the optimal length of an inter-patch movement. A swan that moves to the patch with the highest gain rate was predicted to move to the adjacent patch (at 1 m) if the food density in the current patch had been high (>25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (<25 g/m2). This prediction was tested by measuring the response of swans to manipulated tuber densities. In accordance with our predictions, swans moved a long distance (>3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.


Ecological Modelling | 2002

Seasonal herbivory and mortality compensation in a swan–pondweed system

Niclas Jonzén; Bart A. Nolet; Luis Santamaría; Mats G.E. Svensson

Many birds feed on submerged macrophytes during a temporally discrete period every year, for instance during migratory stopover or at the wintering grounds. Hence, seasonal herbivory is a common feature of the life cycle in many aquatic macrophytes. We are interested in the effect of Bewicks swans (Cygnus columbianus bewickii) feeding on the tubers of fennel pondweed (Potamogeton pectinatus) in the Netherlands every autumn. For that purpose, we developed a sequential macrophyte population model, including seasons of tuber production, herbivory and winter mortality as distinct and unambiguously defined events. The model is characterised and parameterised with both field and laboratory data. Tuber consumption inevitably decreases the density of ramets sprouting next spring, but it may actually increase the density of tubers produced in the following autumn. Hence, we can only understand the effect of grazing on the fennel pondweed population by recognising the seasonal structure of density-dependence. The mean density of fennel pondweed and the yield taken by swans are dependent on the foraging threshold below which no grazing takes place. Furthermore, the consumption has a stabilising effect for a wide range of parameter values.

Collaboration


Dive into the Bart A. Nolet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abel Gyimesi

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.J.D.M. Müskens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert H. T. Prins

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge