Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart Barrell is active.

Publication


Featured researches published by Bart Barrell.


Nature | 1998

Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.

Stewart T. Cole; Roland Brosch; Julian Parkhill; Thierry Garnier; Carol Churcher; David Harris; Stephen V. Gordon; Karin Eiglmeier; S. Gas; Clifton E. Barry; Fredj Tekaia; K. L. Badcock; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Anders Krogh; J. McLean; Sharon Moule; Lee Murphy; Karen Oliver; J. Osborne

Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.


Science | 1996

Life with 6000 Genes

André Goffeau; Bart Barrell; Howard Bussey; Ronald W. Davis; Bernard Dujon; H. Feldmann; Francis Galibert; J D Hoheisel; Claude Jacq; Mark Johnston; Edward J. Louis; Hans-Werner Mewes; Yasufumi Murakami; Peter Philippsen; H Tettelin; Stephen G. Oliver

The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeasts 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.


Nature | 2002

Genome sequence of the human malaria parasite Plasmodium falciparum

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.


Bioinformatics | 2000

Artemis: sequence visualization and annotation

Kim Rutherford; Julian Parkhill; James Crook; Terry Horsnell; Peter M. Rice; Marie-Adele Rajandream; Bart Barrell

SUMMARY Artemis is a DNA sequence visualization and annotation tool that allows the results of any analysis or sets of analyses to be viewed in the context of the sequence and its six-frame translation. Artemis is especially useful in analysing the compact genomes of bacteria, archaea and lower eukaryotes, and will cope with sequences of any size from small genes to whole genomes. It is implemented in Java, and can be run on any suitable platform. Sequences and annotation can be read and written directly in EMBL, GenBank and GFF format. AVAILABITLTY: Artemis is available under the GNU General Public License from http://www.sanger.ac.uk/Software/Artemis


Nature | 2002

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Stephen D. Bentley; K. F. Chater; A.-M. Cerdeño-Tárraga; Gregory L. Challis; Nicholas R. Thomson; Keith D. James; David Harris; M. A. Quail; H. Kieser; D. Harper; Alex Bateman; S. Brown; G. Chandra; Carton W. Chen; Mark O. Collins; Ann Cronin; Audrey Fraser; Arlette Goble; J. Hidalgo; T. Hornsby; S. Howarth; Chih-Hung Huang; T. Kieser; L. Larke; Lee Murphy; K. Oliver; Susan O'Neil; Ester Rabbinowitsch; Marie-Adele Rajandream; Kim Rutherford

Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent ‘tissue-specific’ isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central ‘core’ of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.


Journal of Molecular Biology | 1980

Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing

F. Sanger; Alan Coulson; Bart Barrell; A.J.H. Smith; Bruce A. Roe

Abstract An approach to DNA sequencing using chain-terminating inhibitors (Sanger et al., 1977) combined with cloning of small fragments of DNA in a single-stranded DNA bacteriophage is described. Random fragments from restriction enzyme digestion of the DNA are inserted into the EcoRI site of the modified bacteriophage M13mp2 (Gronenborn & Messing, 1978) using a linker oligonucleotide. Individual recombinant plaques are collected, 1-ml cultures grown, and the DNA isolated. A “flankingprimer” from the vector is used to determine a nucleotide sequence in each inserted DNA fragment by the chain-terminating method. This is a relatively rapid and simple method of accumulating sequence data. The 2771-nucleotide sequence of the largest MboI restriction enzyme fragment from human mitochondrial DNA was determined by this method.


Nature | 2000

The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences

Julian Parkhill; B. W. Wren; K. Mungall; J. M. Ketley; Carol Churcher; D. Basham; Tracey Chillingworth; Robert Davies; Theresa Feltwell; S. Holroyd; K. Jagels; Andrey V. Karlyshev; S. Moule; Mark J. Pallen; C. W. Penn; Michael A. Quail; Marie-Adele Rajandream; K. M. Rutherford; A. van Vliet; Sally Whitehead; Bart Barrell

Campylobacter jejuni, from the delta-epsilon group of proteobacteria, is a microaerophilic, Gram-negative, flagellate, spiral bacterium—properties it shares with the related gastric pathogen Helicobacter pylori. It is the leading cause of bacterial food-borne diarrhoeal disease throughout the world. In addition, infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain–Barré syndrome. Here we report the genome sequence of C. jejuni NCTC11168. C. jejuni has a circular chromosome of 1,641,481 base pairs (30.6% G+C) which is predicted to encode 1,654 proteins and 54 stable RNA species. The genome is unusual in that there are virtually no insertion sequences or phage-associated sequences and very few repeat sequences. One of the most striking findings in the genome was the presence of hypervariable sequences. These short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function. The apparently high rate of variation of these homopolymeric tracts may be important in the survival strategy of C. jejuni.


Nature | 2001

Massive gene decay in the leprosy bacillus.

Stewart T. Cole; Karin Eiglmeier; Julian Parkhill; K. D. James; Nicholas R. Thomson; Paul R. Wheeler; Nadine Honoré; Thierry Garnier; Carol Churcher; David Harris; Karen Mungall; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; S. Duthoy; Theresa Feltwell; A. Fraser; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Céline Lacroix; J. Maclean; Sharon Moule; Lee Murphy; Karen Oliver; Michael A. Quail

Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.


Current Topics in Microbiology and Immunology | 1990

Analysis of the Protein-Coding Content of the Sequence of Human Cytomegalovirus Strain AD169

M. S. Chee; A. T. Bankier; Stephan Beck; R. Bohni; C. M. Brown; R. Cerny; T. Horsnell; C. A. Hutchison; T. Kouzarides; J. A. Martignetti; E. Preddie; S. C. Satchwell; P. Tomlinson; K. M. Weston; Bart Barrell

Large-scale sequence analysis of the AD169 strain of human cytomegalovirus (HCMV) began in this laboratory in 1984 when very little was known about the sequence or location of genetic information in the viral genome. At that time sequence analysis was confined to the major immediate-early gene (Stenberg et al. 1984), a region of the Colburn strain that contained CA tracts (Jeang and Hayward 1983), the L-S junction region (Tamashiro et al. 1984), and what has been termed the transforming region (Kouzarides et al. 1983). This chapter is being written in March 1989 when the sequence is complete except for some remaining polishing of certain areas which is still going on (manuscript in preparation). As far as we know there are no major discrepancies in the data which might lead to the sequence changing although of course this cannot be ruled out. We present a preliminary analysis of the HCMV genome and limit ourselves mainly to the potential protein-coding content of over 200 reading frames.


Nature | 2005

Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.

William C. Nierman; Arnab Pain; Michael J. Anderson; Jennifer R. Wortman; H. Stanley Kim; Javier Arroyo; Matthew Berriman; Keietsu Abe; David B. Archer; Clara Bermejo; Joan W. Bennett; Paul Bowyer; Dan Chen; Matthew Collins; Richard Coulsen; Robert Davies; Paul S. Dyer; Mark L. Farman; Nadia Fedorova; Natalie D. Fedorova; Tamara V. Feldblyum; Reinhard Fischer; Nigel Fosker; Audrey Fraser; José Luis García; María José García; Ariette Goble; Gustavo H. Goldman; Katsuya Gomi; Sam Griffith-Jones

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.

Collaboration


Dive into the Bart Barrell's collaboration.

Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Michael A. Quail

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Carol Churcher

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

David Harris

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Tracey Chillingworth

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Karen Mungall

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marie-Adele Rajandream

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Bentley

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Lee Murphy

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Theresa Feltwell

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge