Bart Devreese
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bart Devreese.
Journal of Biological Chemistry | 2000
Hugo Meyermans; Kris Morreel; Catherine Lapierre; Brigitte Pollet; André De Bruyn; Roger Busson; Piet Herdewijn; Bart Devreese; Jozef Van Beeumen; Jane M. Marita; John Ralph; Cuiying Chen; Bart Burggraeve; Marc Van Montagu; Eric Messens; Wout Boerjan
Caffeoyl-coenzyme AO-methyltransferase (CCoAOMT) methylates, in vitro, caffeoyl-CoA and 5-hydroxyferuloyl-CoA, two possible precursors in monolignol biosynthesis in vivo. To clarify the in vivo role of CCoAOMT in lignin biosynthesis, transgenic poplars with 10% residual CCoAOMT protein levels in the stem xylem were generated. Upon analysis of the xylem, the affected transgenic lines had a 12% reduced Klason lignin content, an 11% increased syringyl/guaiacyl ratio in the noncondensed lignin fraction, and an increase in lignin-attached p-hydroxybenzoate but otherwise a lignin composition similar to that of wild type. Stem xylem of the CCoAOMT-down-regulated lines had a pink-red coloration, which coincided with an enhanced fluorescence of mature vessel cell walls. The reduced production of CCoAOMT caused an accumulation ofO 3-β-d-glucopyranosyl-caffeic acid,O 4-β-d-glucopyranosyl-vanillic acid, andO 4-β-d-glucopyranosyl-sinapic acid (GSA), as authenticated by 1H NMR. Feeding experiments showed thatO 3-β-d-glucopyranosyl-caffeic acid and GSA are storage or detoxification products of caffeic and sinapic acid, respectively. The observation that down-regulation of CCoAOMT decreases lignin amount whereas GSA accumulates to 10% of soluble phenolics indicates that endogenously produced sinapic acid is not a major precursor in syringyl lignin biosynthesis. Our in vivo results support the recently obtained in vitroenzymatic data that suggest that the route from caffeic acid to sinapic acid is not used for lignin biosynthesis.
BMC Genomics | 2014
Christine G. Elsik; Kim C. Worley; Anna K. Bennett; Martin Beye; Francisco Camara; Christopher P. Childers; Dirk C. de Graaf; Griet Debyser; Jixin Deng; Bart Devreese; Eran Elhaik; Jay D. Evans; Leonard J. Foster; Dan Graur; Roderic Guigó; Katharina Hoff; Michael Holder; Matthew E. Hudson; Greg J. Hunt; Huaiyang Jiang; Vandita Joshi; Radhika S. Khetani; Peter Kosarev; Christie Kovar; Jian Ma; Ryszard Maleszka; Robin F. A. Moritz; Monica Munoz-Torres; Terence Murphy; Donna M. Muzny
BackgroundThe first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.ResultsHere, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.ConclusionsLessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
Mass Spectrometry Reviews | 2008
Sebastien Carpentier; Bart Panis; Annelies Vertommen; Ronny Swennen; Kjell Sergeant; Jenny Renaut; Kris Laukens; Erwin Witters; Bart Samyn; Bart Devreese
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Insect Molecular Biology | 2010
Dirk C. de Graaf; Maarten Aerts; Marleen Brunain; Ca Desjardins; Franciscus Jacobs; John H. Werren; Bart Devreese
With the Nasonia vitripennis genome sequences available, we attempted to determine the proteins present in venom by two different approaches. First, we searched for the transcripts of venom proteins by a bioinformatic approach using amino acid sequences of known hymenopteran venom proteins. Second, we performed proteomic analyses of crude N. vitripennis venom removed from the venom reservoir, implementing both an off‐line two‐dimensional liquid chromatography matrix‐assisted laser desorption/ ionization time‐of‐flight (2D‐LC‐MALDI‐TOF) mass spectrometry (MS) and a two‐dimensional liquid chromatography electrospray ionization Founer transform ion cyclotron resonance (2D‐LC‐ESI‐FT‐ICR) MS setup. This combination of bioinformatic and proteomic studies resulted in an extraordinary richness of identified venom constituents. Moreover, half of the 79 identified proteins were not yet associated with insect venoms: 16 proteins showed similarity only to known proteins from other tissues or secretions, and an additional 23 did not show similarity to any known protein. Serine proteases and their inhibitors were the most represented. Fifteen nonsecretory proteins were also identified by proteomic means and probably represent so‐called ‘venom trace elements’. The present study contributes greatly to the understanding of the biological diversity of the venom of parasitoid wasps at the molecular level.
Molecular and Cellular Endocrinology | 1996
Dirk Veelaert; Bart Devreese; Liliane Schoofs; Jozef Van Beeumen; Jozef Vanden Broeck; Stephen S. Tobe; Arnold De Loof
Eight myoinhibiting peptides were purified by high performance liquid chromatography from a methanolic extract of 7000 brains of the desert locust, Schistocerca gregaria. Complete sequences were obtained via a novel, combined approach employing: (1) chemical microsequencing and (2) post-source decay analysis on a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption/ionisation. Each of the peptides shows C-terminal amino acid sequence similarity to cockroach and cricket allatostatins and to blowfly callatostatins. Therefore, these novel peptides were designated Schistocerca gregaria allatostatins (Scg-ASTs) or schistostatins and their primary structures were determined to be: Ala-Tyr-Thr-Tyr-Val-Ser-Glu-Tyr-Lys-Arg-Leu-Pro-Val-Tyr-Asn-Phe-Gly-Leu- NH2 (Scg-AST-2), Ala-Thr-Gly-Ala-Ala-Ser-Leu-Tyr-Ser-Phe-Gly-Leu-NH2 (Scg-AST-3), Gly-Pro-Arg-Thr-Tyr-Ser-Phe-Gly-Leu-NH2 (Scg-AST-4), Gly-Arg-Leu-Tyr-Ser-Phe-Gly-Leu-NH2 (Scg-AST-5), Ala-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH2 (Scg-AST-6), Ala-Gly-Pro-Ala-Pro-Ser-Arg-Leu-Tyr-Ser-Phe-Gly-Leu-NH2 (Scg-AST-7), Glu-Gly-Arg-Met-Tyr-Ser-Phe-Gly-Leu-NH2 (Scg-AST-8), and Ala-Pro-Ala-Glu-His-Arg-Phe-Ser-Phe-Gly-Leu-NH2 (Scg-AST-10). Synthetic Scg-AST peptides inhibit the peristaltic movements of the oviduct of S. gregaria. Although all eight peptides show potent inhibitory effects on juvenile hormone (JH) biosynthesis by corpora allata (CA) of the cockroach Diploptera punctata, no allatostatic effects were observed on CA of the desert locust (S. gregaria).
The FASEB Journal | 2004
Zoltán Nemes; Bart Devreese; Peter M. Steinert; J. Van Beeumen; László Fésüs
The accumulation of misfolded proteins in intracellular inclusions is a generic feature of neurodegenerative disorders. Although heavily ubiquitylated, the aggregated proteins are not degraded by the proteasomes. A possible reason for this phenomenon may be a modification of deposited proteins by transglutaminases forming γ‐glutamyl‐ε‐lysine (GGEL) cross‐links between distinct proteins. Here, we show that the frequency of GGEL cross‐links is an order of magnitude higher in Alzheimers brain cortex than in age‐matched or younger controls. This difference is due to the accumulation of GGEL cross‐links in ubiquitin‐immunopositive protein particles present in both Alzheimers brains and those from aged individuals. The highly cross‐ linked protein aggregates show immunoreactivity to antibodies against tau and neurofilament proteins, and partially also to α‐synuclein, indicating that these structures are inherent in Alzheimers neurofibrillary tangles and Lewy bodies. Using mass sequence analysis, we identified the same six pairs of peptide sequences cross‐linked in both senile and Alzheimers specimens: Gln31 and Gln190 of HSP27 protein are cross‐linked with Lys29 and Lys48 of ubiquitin and HSP27 therefore may cross‐link two (poly)ubiquitin chains. One lysine residue of parkin and one of α‐synuclein were also found to be cross‐linked. The data suggest that cross‐linking of (poly)ubiquitin moieties via HSP27 may have a role in the stabilization of the intraneuronal protein aggregates by interference with the proteasomal elimination of unfolded proteins.
Developmental Cell | 2012
Ryan Whitford; Ana Fernandez; Ricardo Tejos; Amparo Cuéllar Pérez; Jürgen Kleine-Vehn; Steffen Vanneste; Andrzej Drozdzecki; Johannes Leitner; Lindy Abas; Maarten Aerts; Kurt Hoogewijs; Pawel Radoslaw Baster; Ruth De Groodt; Yao-Cheng Lin; Veronique Storme; Yves Van de Peer; Tom Beeckman; Annemieke Madder; Bart Devreese; Christian Luschnig; Jiri Friml; Pierre Hilson
Growth and development are coordinated by an array of intercellular communications. Known plant signaling molecules include phytohormones and hormone peptides. Although both classes can be implicated in the same developmental processes, little is known about the interplay between phytohormone action and peptide signaling within the cellular microenvironment. We show that genes coding for small secretory peptides, designated GOLVEN (GLV), modulate the distribution of the phytohormone auxin. The deregulation of the GLV function impairs the formation of auxin gradients and alters the reorientation of shoots and roots after a gravity stimulus. Specifically, the GLV signal modulates the trafficking dynamics of the auxin efflux carrier PIN-FORMED2 involved in root tropic responses and meristem organization. Our work links the local action of secretory peptides with phytohormone transport.
Insect Biochemistry and Molecular Biology | 1996
Kurt Spittaels; Peter Verhaert; Chris Shaw; R.N. Johnston; Bart Devreese; Jos Van Beeumen; Arnold De Loof
Two novel neuropeptides with neuropeptide F (NPF)-like immunoreactivity have been isolated from brain extracts of the Colorado potato beetle. Purification was achieved primarily by use of reverse phase chromatography including initial C-18 Sep-Pak cartridges and 4 subsequent analytical HPLC columns. Combined data from automated Edman degradation, immunochemical analysis, u.v. absorbance and mass spectrometry led to the elucidation of their full primary structures. The deduced sequences are: Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-NH2 (ARGPQLRLRFamide) and Ala-Pro-Ser-Leu-Arg-Leu-Arg-Phe-NH2 (APSLRLRFamide). On the basis of their primary structure both peptides can be appended to the invertebrate group of neuropeptide Y (NPY)-like peptides, generally referred to as NPFs. We suggest these peptides to be designated Led-NPF-1 and Led-NPF-2.
Applied and Environmental Microbiology | 2002
Marina Georgalaki; Erika Van den Berghe; Dimitrios Kritikos; Bart Devreese; Jozef Van Beeumen; George Kalantzopoulos; Luc De Vuyst; Effie Tsakalidou
ABSTRACT Streptococcus macedonicus ACA-DC 198, a strain isolated from Greek Kasseri cheese, produces a food-grade lantibiotic named macedocin. Macedocin has a molecular mass of 2,794.76 ± 0.42 Da, as determined by electrospray mass spectrometry. Partial N-terminal sequence analysis revealed 22 amino acid residues that correspond with the amino acid sequence of the lantibiotics SA-FF22 and SA-M49, both of which were isolated from the pathogen Streptococcus pyogenes. Macedocin inhibits a broad spectrum of lactic acid bacteria, as well as several food spoilage and pathogenic bacteria, including Clostridium tyrobutyricum. It displays a bactericidal effect towards the most sensitive indicator strain, Lactobacillus sakei subsp. sakei LMG 13558T, while the producer strain itself displays autoinhibition when it is grown under conditions that do not favor bacteriocin production. Macedocin is active at pHs between 4.0 and 9.0, and it retains activity even after incubation for 20 min at 121°C with 1 atm of overpressure. Inhibition of macedocin by proteolytic enzymes is variable.
Toxicon | 2008
Nico Peiren; Dirk C. de Graaf; Frank Vanrobaeys; Ellen L. Danneels; Bart Devreese; Jozef Van Beeumen; Frans J. Jacobs
Honey bee workers use venom for the defence of the colony and themselves when they are exposed to dangers and predators. It is produced by a long thin, convoluted, and bifurcated gland, and consists of several toxic proteins and peptides. The present study was undertaken in order to identify the mechanisms that protect the venom gland secretory cells against these harmful components. Samples of whole venom glands, including the interconnected reservoirs, were separated by two-dimensional gel electrophoresis and the most abundant protein spots were subjected to mass spectrometric identification using MALDI TOF/TOF-MS and LC MS/MS. This proteomic study revealed four antioxidant enzymes: CuZn superoxide dismutase (SOD1), glutathione-S-transferase sigma 1 isoform A (GSTS1), peroxiredoxin 2540 (PXR2540) and thioredoxin peroxidase 1 isoform A (TPX1). Although glutathione-S-transferase (GST) has also been associated with xenobiotic detoxification, the protein we found belongs to the GST Sigma class which is known to protect against oxidative stress only. Moreover, we could demonstrate that the GST and SOD activity of the venom gland was low and moderate, respectively, when compared to other tissues from the adult honey bee. Several proteins involved in other forms of stress were likewise found but it remains uncertain what their function is in the venom gland. In addition to major royal jelly protein 9 (MRJP9), already found in a previous proteomic study, we identified MRJP8 as second member of the MRJP protein family to be associated with the venom gland. Transcripts of both MRJPs were amplified and sequenced. Two endocuticular structural proteins were abundantly present in the 2D-gel and most probably represent a structural component of the epicuticular lining that protects the secretory cells from the toxins they produce.