Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart L. Haagmans is active.

Publication


Featured researches published by Bart L. Haagmans.


Nature | 2013

Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC

V. Stalin Raj; Huihui Mou; Saskia L. Smits; Dick H. W. Dekkers; Marcel A. Müller; Ronald Dijkman; Doreen Muth; Jeroen Demmers; Ali Moh Zaki; Ron A. M. Fouchier; Volker Thiel; Christian Drosten; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Berend Jan Bosch; Bart L. Haagmans

Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.


Mbio | 2012

Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans

Sander van Boheemen; Miranda de Graaf; Chris Lauber; Theo M. Bestebroer; V. Stalin Raj; Ali Moh Zaki; Albert D. M. E. Osterhaus; Bart L. Haagmans; Alexander E. Gorbalenya; Eric J. Snijder; Ron A. M. Fouchier

ABSTRACT A novel human coronavirus (HCoV-EMC/2012) was isolated from a man with acute pneumonia and renal failure in June 2012. This report describes the complete genome sequence, genome organization, and expression strategy of HCoV-EMC/2012 and its relation with known coronaviruses. The genome contains 30,119 nucleotides and contains at least 10 predicted open reading frames, 9 of which are predicted to be expressed from a nested set of seven subgenomic mRNAs. Phylogenetic analysis of the replicase gene of coronaviruses with completely sequenced genomes showed that HCoV-EMC/2012 is most closely related to Tylonycteris bat coronavirus HKU4 (BtCoV-HKU4) and Pipistrellus bat coronavirus HKU5 (BtCoV-HKU5), which prototype two species in lineage C of the genus Betacoronavirus. In accordance with the guidelines of the International Committee on Taxonomy of Viruses, and in view of the 75% and 77% amino acid sequence identity in 7 conserved replicase domains with BtCoV-HKU4 and BtCoV-HKU5, respectively, we propose that HCoV-EMC/2012 prototypes a novel species in the genus Betacoronavirus. HCoV-EMC/2012 may be most closely related to a coronavirus detected in Pipistrellus pipistrellus in The Netherlands, but because only a short sequence from the most conserved part of the RNA-dependent RNA polymerase-encoding region of the genome was reported for this bat virus, its genetic distance from HCoV-EMC remains uncertain. HCoV-EMC/2012 is the sixth coronavirus known to infect humans and the first human virus within betacoronavirus lineage C. IMPORTANCE Coronaviruses are capable of infecting humans and many animal species. Most infections caused by human coronaviruses are relatively mild. However, the outbreak of severe acute respiratory syndrome (SARS) caused by SARS-CoV in 2002 to 2003 and the fatal infection of a human by HCoV-EMC/2012 in 2012 show that coronaviruses are able to cause severe, sometimes fatal disease in humans. We have determined the complete genome of HCoV-EMC/2012 using an unbiased virus discovery approach involving next-generation sequencing techniques, which enabled subsequent state-of-the-art bioinformatics, phylogenetics, and taxonomic analyses. By establishing its complete genome sequence, HCoV-EMC/2012 was characterized as a new genotype which is closely related to bat coronaviruses that are distant from SARS-CoV. We expect that this information will be vital to rapid advancement of both clinical and vital research on this emerging pathogen. Coronaviruses are capable of infecting humans and many animal species. Most infections caused by human coronaviruses are relatively mild. However, the outbreak of severe acute respiratory syndrome (SARS) caused by SARS-CoV in 2002 to 2003 and the fatal infection of a human by HCoV-EMC/2012 in 2012 show that coronaviruses are able to cause severe, sometimes fatal disease in humans. We have determined the complete genome of HCoV-EMC/2012 using an unbiased virus discovery approach involving next-generation sequencing techniques, which enabled subsequent state-of-the-art bioinformatics, phylogenetics, and taxonomic analyses. By establishing its complete genome sequence, HCoV-EMC/2012 was characterized as a new genotype which is closely related to bat coronaviruses that are distant from SARS-CoV. We expect that this information will be vital to rapid advancement of both clinical and vital research on this emerging pathogen.


Lancet Infectious Diseases | 2013

Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study

Chantal Reusken; Bart L. Haagmans; Marcel A. Müller; Carlos Gutiérrez; Gert Jan Godeke; Benjamin Meyer; Doreen Muth; V. Stalin Raj; Laura de Vries; Victor Max Corman; Jan Felix Drexler; Saskia L. Smits; Yasmin E. El Tahir; Rita de Sousa; Janko van Beek; Norbert Nowotny; Kees van Maanen; Ezequiel Hidalgo-Hermoso; Berend Jan Bosch; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Christian Gortázar-Schmidt; Christian Drosten; Marion Koopmans

Summary Background A new betacoronavirus—Middle East respiratory syndrome coronavirus (MERS-CoV)—has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. Methods We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. Findings 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. Interpretation MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. Funding European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.


Lancet Infectious Diseases | 2014

Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

Bart L. Haagmans; Said H S Al Dhahiry; Chantal Reusken; V. Stalin Raj; Monica Galiano; Richard Myers; Gert-Jan Godeke; Marcel Jonges; Elmoubasher Farag; Ayman Diab; Hazem Ghobashy; Farhoud Alhajri; Mohamed Al-Thani; Salih Ali Al-Marri; Hamad Eid Al Romaihi; Abdullatif Al Khal; Alison Bermingham; Albert D. M. E. Osterhaus; Mohd M. AlHajri; Marion Koopmans

Summary Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar linked to two human cases of the infection in October, 2013. Methods We took nose swabs, rectal swabs, and blood samples from all camels on the Qatari farm. We tested swabs with RT-PCR, with amplification targeting the E gene (upE), nucleocapsid (N) gene, and open reading frame (ORF) 1a. PCR positive samples were tested by different MERS-CoV specific PCRs and obtained sequences were used for phylogentic analysis together with sequences from the linked human cases and other human cases. We tested serum samples from the camels for IgG immunofluorescence assay, protein microarray, and virus neutralisation assay. Findings We obtained samples from 14 camels on Oct 17, 2013. We detected MERS-CoV in nose swabs from three camels by three independent RT-PCRs and sequencing. The nucleotide sequence of an ORF1a fragment (940 nucleotides) and a 4·2 kb concatenated fragment were very similar to the MERS-CoV from two human cases on the same farm and a MERS-CoV isolate from Hafr-Al-Batin. Eight additional camel nose swabs were positive on one or more RT-PCRs, but could not be confirmed by sequencing. All camels had MERS-CoV spike-binding antibodies that correlated well with the presence of neutralising antibodies to MERS-CoV. Interpretation Our study provides virological confirmation of MERS-CoV in camels and suggests a recent outbreak affecting both human beings and camels. We cannot conclude whether the people on the farm were infected by the camels or vice versa, or if a third source was responsible. Funding European Union projects EMPERIE (contract number 223498), ANTIGONE (contract number 278976), and the VIRGO consortium.


Nature | 2003

Virology: SARS virus infection of cats and ferrets.

Byron E. E. Martina; Bart L. Haagmans; Thijs Kuiken; Ron A. M. Fouchier; Geert van Amerongen; J. S. Malik Peiris; Wilina Lim; Albert D. M. E. Osterhaus

The reservoir of the coronavirus isolated from patients with severe acute respiratory syndrome (SARS) is still unknown, but is suspected to have been a wild animal species. Here we show that ferrets (Mustela furo) and domestic cats (Felis domesticus) are susceptible to infection by SARS coronavirus (SCV) and that they can efficiently transmit the virus to previously uninfected animals that are housed with them. The observation that these two distantly related carnivores can so easily be infected with the virus indicates that the reservoir for this pathogen may involve a range of animal species.


Nature Medicine | 2004

Pegylated interferon-|[alpha]| protects type 1 pneumocytes against SARS coronavirus infection in macaques

Bart L. Haagmans; Thijs Kuiken; Byron E. E. Martina; Ron A. M. Fouchier; Geert van Amerongen; Debby van Riel; Ton de Jong; Shigeyuki Itamura; Kwok-Hung Chan; Masato Tashiro; Albert D. M. E. Osterhaus

The primary cause of severe acute respiratory syndrome (SARS) is a newly discovered coronavirus. Replication of this SARS coronavirus (SCV) occurs mainly in the lower respiratory tract, and causes diffuse alveolar damage. Lack of understanding of the pathogenesis of SARS has prevented the rational development of a therapy against this disease. Here we show extensive SCV antigen expression in type 1 pneumocytes of experimentally infected cynomolgus macaques (Macaca fascicularis) at 4 d postinfection (d.p.i.), indicating that this cell type is the primary target for SCV infection early in the disease, and explaining the subsequent pulmonary damage. We also show that prophylactic treatment of SCV-infected macaques with the antiviral agent pegylated interferon-α (IFN-α) significantly reduces viral replication and excretion, viral antigen expression by type 1 pneumocytes and pulmonary damage, compared with untreated macaques. Postexposure treatment with pegylated IFN-α yielded intermediate results. We therefore suggest that pegylated IFN-α protects type 1 pneumocytes from SCV infection, and should be considered a candidate drug for SARS therapy


The Journal of Infectious Diseases | 2006

Interferon (IFN)–γ–Inducible Protein–10: Association with Histological Results, Viral Kinetics, and Outcome during Treatment with Pegylated IFN-α2a and Ribavirin for Chronic Hepatitis C Virus Infection

Ana Romero; Martin Lagging; Johan Westin; Amar P. Dhillon; Lynn B. Dustin; Jean-Michel Pawlotsky; Avidan U. Neumann; Carlo Ferrari; Gabriele Missale; Bart L. Haagmans; Solko W. Schalm; Stefan Zeuzem; Francesco Negro; Elke Verheij-Hart

BACKGROUND We investigated associations between interferon (IFN)-gamma-inducible protein (IP)-10 and liver histological results, viral kinetic response, and treatment outcome in patients infected with hepatitis C virus (HCV) genotypes 1-4. METHODS Plasma IP-10 was monitored before, during, and after treatment with pegylated IFN- alpha 2a and ribavirin in 265 HCV-infected patients. RESULTS In univariate analyses, a low baseline IP-10 level was significantly associated with low baseline viral load, rapid viral response (RVR), a sustained viral response (SVR), body mass index <25 kg/m2, and less-pronounced fibrosis, inflammation, and steatosis (for HCV genotypes other than 3). When the results of the univariate analyses were included in multivariate analyses, a low plasma IP-10 level, low baseline viral load, and genotype 2 or 3 infection were independent predictors of an RVR and SVR. IP-10 levels decreased 6 weeks into treatment and remained low in patients with an SVR. By contrast, plasma levels of IP-10 rebounded in patients who had detectable HCV RNA after the completion of treatment. Using cutoff IP-10 levels of 150 and 600 pg/mL for predicting an SVR in patients infected with HCV genotype 1 yielded a specificity and sensitivity of 81% and 95%, respectively. CONCLUSION Baseline IP-10 levels are predictive of the response to HCV treatment.


Hepatology | 2006

IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection

Martin Lagging; Ana Romero; Johan Westin; Gunnar Norkrans; Amar P. Dhillon; Jean-Michel Pawlotsky; Stefan Zeuzem; Michael von Wagner; Francesco Negro; Solko W. Schalm; Bart L. Haagmans; Carlo Ferrari; Gabriele Missale; Avidan U. Neumann; Elke Verheij-Hart; Kristoffer Hellstrand

Plasma from 173 patients with HCV genotype 1 infection was analyzed for IP‐10 levels prior to treatment with pegylated interferon‐α‐2a and ribavirin. Significantly lower IP‐10 levels were observed in patients achieving a rapid viral response (RVR) (P < .0001), even in those with body mass index (BMI) ≥ 25 kg/m2 (P = .004) and with baseline viral load ≥ 2 million IU/mL (P = .001). Similarly, significantly lower IP‐10 levels were observed in patients obtaining a sustained viral response (SVR) (P = .0002), including those having higher BMI (P < .05), higher viral load (P = .0005), and both higher BMI and viral load (P < .03). In multivariate logistic regression analyses, a low IP‐10 value was independently predictive of both RVR and SVR. A baseline cutoff IP‐10 value of 600 pg/mL yielded a negative predictive value (NPV) of 79% (19/24) for all genotype 1–infected patients, which was comparable with that observed using a reduction in HCV‐RNA by at least 2 logs after 12 weeks of therapy (NPV 86%; 19/22); by combining the two, 30 of 38 patients (NPV 79%) potentially could have been spared unnecessary therapy. In patients having both higher BMI and viral load, cut‐off levels of 150 and 600 pg/mL yielded a positive predictive value (PPV) of 71% and NPV of 100%, respectively. In conclusion, pretreatment IP‐10 levels predict RVR and SVR in patients infected with HCV genotype 1, even in those with higher BMI and viral load. A substantial proportion of the latter patients may achieve SVR in spite of unfavorable baseline characteristics if their pretreatment IP‐10 level is low. Thus, pretreatment IP‐10 analysis may prove helpful in decision‐making regarding pharmaceutical intervention. (HEPATOLOGY 2006;44:1617–1625.)


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells

Vedashree Ramakrishnaiah; Christine Thumann; Isabel Fofana; F. Habersetzer; Qiuwei Pan; Petra E. de Ruiter; Rob Willemsen; Jeroen Demmers; Victor Stalin Raj; Guido Jenster; Jaap Kwekkeboom; Hugo W. Tilanus; Bart L. Haagmans; Thomas F. Baumert; Luc J. W. van der Laan

Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicles for intercellular communication. Exosomes secreted by most cell types can mediate transfer of proteins, mRNAs, and microRNAs, but their role in the transmission of infectious agents is less established. Recent studies have shown that hepatocyte-derived exosomes containing hepatitis C virus (HCV) RNA can activate innate immune cells, but the role of exosomes in the transmission of HCV between hepatocytes remains unknown. In this study, we investigated whether exosomes transfer HCV in the presence of neutralizing antibodies. Purified exosomes isolated from HCV-infected human hepatoma Huh7.5.1 cells were shown to contain full-length viral RNA, viral protein, and particles, as determined by RT-PCR, mass spectrometry, and transmission electron microscopy. Exosomes from HCV-infected cells were capable of transmitting infection to naive human hepatoma Huh7.5.1 cells and establishing a productive infection. Even with subgenomic replicons, lacking structural viral proteins, exosome-mediated transmission of HCV RNA was observed. Treatment with patient-derived IgGs showed a variable degree of neutralization of exosome-mediated infection compared with free virus. In conclusion, this study showed that hepatic exosomes can transmit productive HCV infection in vitro and are partially resistant to antibody neutralization. This discovery sheds light on neutralizing antibodies resistant to HCV transmission by exosomes as a potential immune evasion mechanism.


The Lancet | 2004

Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets.

Jan ter Meulen; Alexander Berthold Hendrik Bakker; Edward Norbert van den Brink; Gerrit Jan Weverling; Byron E. E. Martina; Bart L. Haagmans; Thijs Kuiken; John de Kruif; Wolfgang Preiser; Willy J. M. Spaan; Hans R. Gelderblom; Jaap Goudsmit; Albert D. M. E. Osterhaus

Summary SARS coronavirus continues to cause sporadic cases of severe acute respiratory syndrome (SARS) in China. No active or passive immunoprophylaxis for disease induced by SARS coronavirus is available. We investigated prophylaxis of SARS coronavirus infection with a neutralising human monoclonal antibody in ferrets, which can be readily infected with the virus. Prophylactic administration of the monoclonal antibody at 10 mg/kg reduced replication of SARS coronavirus in the lungs of infected ferrets by 3·3 logs (95% Cl 2·6–4·0 logs; p<0·001), completely prevented the development of SARS coronavirus-induced macroscopic lung pathology (p=0·013), and abolished shedding of virus in pharyngeal secretions. The data generated in this animal model show that administration of a human monoclonal antibody might offer a feasible and effective prophylaxis for the control of human SARS coronavirus infection.

Collaboration


Dive into the Bart L. Haagmans's collaboration.

Top Co-Authors

Avatar

Saskia L. Smits

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

V. Stalin Raj

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Marion Koopmans

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Reusken

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Suzan D. Pas

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Thijs Kuiken

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rogier Bodewes

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge