Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart Landuyt is active.

Publication


Featured researches published by Bart Landuyt.


Pharmacological Reviews | 2004

Vascular Endothelial Growth Factor and Angiogenesis

Ann Hoeben; Bart Landuyt; Martin S. Highley; Hans Wildiers; Allan T. van Oosterom; Ernst A. de Bruijn

Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro- and antiangiogenic molecules have already been discovered. Vascular endothelial growth factor (VEGF) is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration, and new vessel formation. In this article, the role of VEGF in physiological and pathological processes is reviewed. We also discuss how modulation of VEGF expression creates new therapeutic possibilities and describe recent developments in this field.


British Journal of Cancer | 2003

Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11

Hans Wildiers; Gunther Guetens; G. De Boeck; Erik Verbeken; Bart Landuyt; W Landuyt; E. A. De Bruijn; A. van Oosterom

Promising preclinical activity with agents blocking the function of vascular endothelial growth factor (VEGF) has been observed in various cancer types, especially with combination therapy. However, these drugs decrease microvessel density, and it is not known whether this reduced vessel density (VD) results in decreased delivery of concomitantly administered classical anticancer drugs. We designed an in vivo study to investigate the relation between VEGF-blocking therapy, tumoral blood vessels, and intratumoral uptake of anticancer drugs. Nude NMRI mice bearing colon adenocarcinoma (HT29) were treated with the anti-VEGFmAb A4.6.1 or placebo. After 1 week, CPT-11 was administered 1 h prior to killing the animals. In A4.6.1 treated tumours, there was a significant decrease in VD, more pronounced with potentially functional large vessels than endothelial cords. Interestingly, a trend to increased intratumoral CPT-11 concentration was observed (P=0.09). In parallel, we measured an increase in tumour perfusion, as estimated by high-performance liquid chromatography determination of intratumoural Hoechst 33342 concentration. In the growth delay study, CPT-11 was at least equally effective with or without pretreatment with A4.6.1. These data suggest that tumour vascular function and tumour uptake of anticancer drugs improve with VEGF-blocking therapy, and indicate the relevance for further investigations.


Cellular Immunology | 2012

A comprehensive summary of LL-37, the factotum human cathelicidin peptide

Dieter Vandamme; Bart Landuyt; Walter Luyten; Liliane Schoofs

Cathelicidins are a group of antimicrobial peptides. Since their discovery, it has become clear that they are an exceptional class of peptides, with some members having pleiotropic effects. Not only do they possess an antibacterial, antifungal and antiviral function, they also show a chemotactic and immunostimulatory/-modulatory effect. Moreover, they are capable of inducing wound healing, angiogenesis and modulating apoptosis. Recent insights even indicate for a role of these peptides in cancer. This review provides a comprehensive summary of the most recent and relevant insights concerning the human cathelicidin LL-37.


Journal of Separation Science | 2008

Peptidomics: The integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis

Kurt Boonen; Bart Landuyt; Geert Baggerman; Steven Husson; Jurgen Huybrechts; Liliane Schoofs

MS is currently one of the most important analytical techniques in biological and medical research. ESI and MALDI launched the field of MS into biology. The performance of mass spectrometers increased tremendously over the past decades. Other technological advances increased the analytical power of biological MS even more. First, the advent of the genome projects allowed an automated analysis of mass spectrometric data. Second, improved separation techniques, like nanoscale HPLC, are essential for MS analysis of biomolecules. The recent progress in bioinformatics is the third factor that accelerated the biochemical analysis of macromolecules. The first part of this review will introduce the basics of these techniques. The field that integrates all these techniques to identify endogenous peptides is called peptidomics and will be discussed in the last section. This integrated approach aims at identifying all the present peptides in a cell, organ or organism (the peptidome). Today, peptidomics is used by several fields of research. Special emphasis will be given to the identification of neuropeptides, a class of short proteins that fulfil several important intercellular signalling functions in every animal. MS imaging techniques and biomarker discovery will also be discussed briefly.


Journal of Biotechnology | 2015

3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis

Jin Young Kim; David A. Fluri; Rosemarie Marchan; Kurt Boonen; Soumyaranjan Mohanty; Prateek Singh; Seddik Hammad; Bart Landuyt; Jan G. Hengstler; Jens M. Kelm; Andreas Hierlemann; Olivier Frey

Rational development of more physiologic in vitro models includes the design of robust and flexible 3D-microtissue-based multi-tissue devices, which allow for tissue-tissue interactions. The developed device consists of multiple microchambers interconnected by microchannels. Pre-formed spherical microtissues are loaded into the microchambers and cultured under continuous perfusion. Gravity-driven flow is generated from on-chip reservoirs through automated chip-tilting without any need for additional tubing and external pumps. This tilting concept allows for operating up to 48 devices in parallel in order to test various drug concentrations with a sufficient number of replicates. For a proof of concept, rat liver and colorectal tumor microtissues were interconnected on the chip and cultured during 8 days in the presence of the pro-drug cyclophosphamide. Cyclophosphamide has a significant impact on tumor growth but only after bio-activation by the liver. This effect was only observed in the perfused and interconnected co-cultures of different microtissue types on-chip, whereas the discontinuous transfer of supernatant via pipetting from static liver microtissues that have been treated with cyclophosphamide did not significantly affect tumor growth. The results indicate the utility and multi-tissue functionality of this platform. The importance of continuous medium circulation and tissue interaction is highlighted.


Neuropharmacology | 2010

Mass spectrometric profiling of (neuro)-peptides in the worker honeybee, Apis mellifera.

Bart Boerjan; Dries Cardoen; Annelies Bogaerts; Bart Landuyt; Liliane Schoofs; Peter Verleyen

The honeybee is the economically most important beneficial insect and a model for studying immunity, development and social behavior. Hence, this species was selected for genome sequencing and annotation. An intensive interplay between bioinformatics and mass spectrometry (MS) resulted in the annotation of 36 neuropeptide genes (Hummon et al., 2006). Exactly 100 peptides were demonstrated by a variety of MS techniques. In this follow-up study we dissected and analysed separately all ganglia of the central nervous system (CNS) of adult worker bees in three repeats. The combined MALDI-TOF spectra enabled the accurate mapping of 67 peptides, encoded by 20 precursors. We also demonstrated the expression of an additional but already predicted peptide. In addition to putative bioactive peptides we also list and discuss spacer peptides, propeptides and truncated peptides. The majority of such peptides have a more restricted distribution pattern. Their presence provides some information on the precursor turnover and/or the location of neural cell bodies in which they are produced. Of a given precursor, the (neuro)-peptides with the widest distribution pattern are likely to be the best candidates to interact with receptors. The separate analysis of a neuroendocrine complex and the mushroom body yields suggestions as to which (neuro)-peptides might act as hormones and which neuropeptides might be involved in the complex spectrum of non-hormone driven honeybee behaviour, at these sites. Our data complement immunohistochemical studies of (neuro)-peptides in the honeybee, and form a reference for comparative studies in other insect or arthropod models, in particular in the light of recent or upcoming genome projects. Finally, they also form a firm basis for physiological, functional and/or differential peptidomics studies in the honeybee.


Chemistry & Biology | 2010

Isolation and Purification of a New Kalimantacin/Batumin-Related Polyketide Antibiotic and Elucidation of Its Biosynthesis Gene Cluster

Wesley Mattheus; Ling-Jie Gao; Piet Herdewijn; Bart Landuyt; Jan Verhaegen; Joleen Masschelein; Guido Volckaert; Rob Lavigne

Kal/bat, a polyketide, isolated to high purity (>95%) is characterized by strong and selective antibacterial activity against Staphylococcus species (minimum inhibitory concentration, 0.05 microg/mL), and no resistance was observed in strains already resistant to commonly used antibiotics. The kal/bat biosynthesis gene cluster was determined to a 62 kb genomic region of Pseudomonas fluorescens BCCM_ID9359. The kal/bat gene cluster consists of 16 open reading frames (ORF), encoding a hybrid PKS-NRPS system, extended with trans-acting tailoring functions. A full model for kal/bat biosynthesis is postulated and experimentally tested by gene inactivation, structural confirmation (using NMR spectroscopy), and complementation. The structural and microbiological study of biosynthetic kal/bat analogs revealed the importance of the carbamoyl group and 17-keto group for antibacterial activity. The mechanism of self-resistance lies within the production of an inactive intermediate, which is activated in a one-step enzymatic oxidation upon export. The genetic basis and biochemical elucidation of the biosynthesis pathway of this antibiotic will facilitate rational engineering for the design of novel structures with improved activities. This makes it a promising new therapeutic option to cope with multidrug-resistant clinical infections.


Mbio | 2013

A Multifaceted Study of Pseudomonas aeruginosa Shutdown by Virulent Podovirus LUZ19

Rob Lavigne; Elke Lecoutere; Jeroen Wagemans; William Cenens; Abram Aertsen; Liliane Schoofs; Bart Landuyt; Jan Paeshuyse; Maurice Scheer; Max Schobert; Pieter-Jan Ceyssens

ABSTRACT In contrast to the rapidly increasing knowledge on genome content and diversity of bacterial viruses, insights in intracellular phage development and its impact on bacterial physiology are very limited. We present a multifaceted study combining quantitative PCR (qPCR), microarray, RNA-seq, and two-dimensional gel electrophoresis (2D-GE), to obtain a global overview of alterations in DNA, RNA, and protein content in Pseudomonas aeruginosa PAO1 cells upon infection with the strictly lytic phage LUZ19. Viral genome replication occurs in the second half of the phage infection cycle and coincides with degradation of the bacterial genome. At the RNA level, there is a sharp increase in viral mRNAs from 23 to 60% of all transcripts after 5 and 15 min of infection, respectively. Although microarray analysis revealed a complex pattern of bacterial up- and downregulated genes, the accumulation of viral mRNA clearly coincides with a general breakdown of abundant bacterial transcripts. Two-dimensional gel electrophoretic analyses shows no bacterial protein degradation during phage infection, and seven stress-related bacterial proteins appear. Moreover, the two most abundantly expressed early and late-early phage proteins, LUZ19 gene product 13 (Gp13) and Gp21, completely inhibit P. aeruginosa growth when expressed from a single-copy plasmid. Since Gp13 encodes a predicted GNAT acetyltransferase, this observation points at a crucial but yet unexplored level of posttranslational viral control during infection. IMPORTANCE Massive genome sequencing has led to important insights into the enormous genetic diversity of bacterial viruses (bacteriophages). However, for nearly all known phages, information on the impact of the phage infection on host physiology and intracellular phage development is scarce. This aspect of phage research should be revitalized, as phages evolved genes which can shut down or redirect bacterial processes in a very efficient way, which can be exploited towards antibacterial design. In this context, we initiated a study of the human opportunistic pathogen Pseudomonas aeruginosa under attack by one its most common predators, the Phikmvlikevirus. By analyzing various stages of infection at different levels, this study uncovers new features of phage infection, representing a cornerstone for future studies on members of this phage genus. Massive genome sequencing has led to important insights into the enormous genetic diversity of bacterial viruses (bacteriophages). However, for nearly all known phages, information on the impact of the phage infection on host physiology and intracellular phage development is scarce. This aspect of phage research should be revitalized, as phages evolved genes which can shut down or redirect bacterial processes in a very efficient way, which can be exploited towards antibacterial design. In this context, we initiated a study of the human opportunistic pathogen Pseudomonas aeruginosa under attack by one its most common predators, the Phikmvlikevirus. By analyzing various stages of infection at different levels, this study uncovers new features of phage infection, representing a cornerstone for future studies on members of this phage genus.


Amino Acids | 2013

Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives

Evelyne Maes; Valérie Broeckx; Inge Mertens; Xavier Sagaert; Hans Prenen; Bart Landuyt; Liliane Schoofs

Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.


Peptides | 2009

Comparative peptidomics of Caenorhabditis elegans versus C. briggsae by LC-MALDI-TOF MS

Steven Husson; Bart Landuyt; Thomas Nys; Geert Baggerman; Kurt Boonen; Elke Clynen; Marleen Lindemans; Tom Janssen; Liliane Schoofs

Neuropeptides are important signaling molecules that function in cell-cell communication as neurotransmitters or hormones to orchestrate a wide variety of physiological conditions and behaviors. These endogenous peptides can be monitored by high throughput peptidomics technologies from virtually any tissue or organism. The neuropeptide complement of the soil nematode Caenorhabditis elegans has been characterized by on-line two-dimensional liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (2D-nanoLC Q-TOF MS/MS). Here, we use an alternative peptidomics approach combining liquid chromatography (LC) with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to map the peptide content of C. elegans and another Caenorhabditis species, Caenorhabditis briggsae. This study allows a better annotation of neuropeptide-encoding genes from the C. briggsae genome and provides a promising basis for further evolutionary comparisons.

Collaboration


Dive into the Bart Landuyt's collaboration.

Top Co-Authors

Avatar

Liliane Schoofs

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Geert Baggerman

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliane Schoofs

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Inge Mertens

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Evelyne Maes

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt Boonen

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Valérie Broeckx

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elke Clynen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge