Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart M. Bartlett is active.

Publication


Featured researches published by Bart M. Bartlett.


ACS Nano | 2014

Chemically Bonded TiO2–Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries

Vinodkumar Etacheri; Joseph E. Yourey; Bart M. Bartlett

Although Li-ion batteries have attracted significant interest due to their higher energy density, lack of high rate performance electrode materials and intrinsic safety issues challenge their commercial applications. Herein, we demonstrate a simple photocatalytic reduction method that simultaneously reduces graphene oxide (GO) and anchors (010)-faceted mesoporous bronze-phase titania (TiO2-B) nanosheets to reduced graphene oxide (RGO) through Ti(3+)-C bonds. Formation of Ti(3+)-C bonds during the photocatalytic reduction process was identified using electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) techniques. When cycled between 1-3 V (vs Li(+/0)), these chemically bonded TiO2-B/RGO hybrid nanostructures show significantly higher Li-ion storage capacities and rate capability compared to bare TiO2-B nanosheets and a physically mixed TiO2-B/RGO composite. In addition, 80% of the initial specific (gravimetric) capacity was retained even after 1000 charge-discharge cycles at a high rate of 40C. The improved electrochemical performance of TiO2-B/RGO nanoarchitectures is attributed to the presence of exposed (010) facets, mesoporosity, and efficient interfacial charge transfer between RGO monolayers and TiO2-B nanosheets.


Physical Review Letters | 2007

Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2

Joel S. Helton; K. Matan; M. P. Shores; E. A. Nytko; Bart M. Bartlett; Y. Yoshida; Y. Takano; A. Suslov; Y. Qiu; Jae Ho Chung; Daniel G. Nocera; Yueh-Lin Lee

We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of theta CW approximately = -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law temperature dependence. These results suggest that an unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.


Journal of the American Chemical Society | 2014

Anchoring a Molecular Iron Catalyst to Solar-Responsive WO3 Improves the Rate and Selectivity of Photoelectrochemical Water Oxidation

Benjamin M. Klepser; Bart M. Bartlett

Molecular catalysts help overcome the kinetic limitations of water oxidation and generally result in faster rates for water oxidation than do heterogeneous catalysts. However, molecular catalysts typically function in the dark and therefore require sacrificial oxidants such as Ce(4+) or S2O8(2-) to provide the driving force for the reaction. In this Communication, covalently anchoring a phosphonate-derivatized complex, Fe(tebppmcn)Cl2 (1), to WO3 removes the need for a sacrificial oxidant and increases the rate of photoelectrochemical water oxidation on WO3 by 60%. The dual-action catalyst, 1-WO3, also gives rise to increased selectivity for water oxidation in pH 3 Na2SO4 (56% on bare WO3, 79% on 1-WO3). This approach provides promising alternative routes for solar water oxidation.


Inorganic Chemistry | 2009

Magnetic Exchange Coupling in Actinide-Containing Molecules

Jeffrey D. Rinehart; T. David Harris; Stosh A. Kozimor; Bart M. Bartlett; Jeffrey R. Long

Recent progress in the assembly of actinide-containing coordination clusters has generated systems in which the first glimpses of magnetic exchange coupling can be recognized. Such systems are of interest owing to the prospects for involving 5f electrons in stronger magnetic exchange than has been observed for electrons in the more contracted 4f orbitals of the lanthanide elements. Here, we survey the actinide-containing molecules thought to exhibit magnetic exchange interactions, including multiuranium, uranium-lanthanide, uranium-transition metal, and uranium-radical species. Interpretation of the magnetic susceptibility data for compounds of this type is complicated by the combination of spin-orbit coupling and ligand-field effects arising for actinide ions. Nevertheless, for systems where analogues featuring diamagnetic replacement components for the non-actinide spin centers can be synthesized, a data subtraction approach can be utilized to probe the presence of exchange coupling. In addition, methods have been developed for employing the resulting data to estimate lower and upper bounds for the exchange constant. Emphasis is placed on evaluation of the linear clusters (cyclam)M[(mu-Cl)U(Me(2)Pz)(4)](2) (M = Co, Ni, Cu, Zn; cyclam = 1,4,8,11-tetraazacyclotetradecane; Me(2)Pz(-) = 3,5-dimethylpyrazolate), for which strong ferromagnetic exchange with 15 cm(-1) < or = J < or = 48 cm(-1) is observed for the Co(II)-containing species. Owing to the modular synthetic approach employed, this system in particular offers numerous opportunities for adjusting the strength of the magnetic exchange coupling and the total number of unpaired electrons. To this end, the prospects of such modularity are discussed through the lens of several new related clusters. Ultimately, it is hoped that this research will be of utility in the development of electronic structure models that successfully describe the magnetic behavior of actinide compounds and will perhaps even lead to new actinide-based single-molecule magnets.


Physical Review B | 2011

Dzyaloshinskii-Moriya interaction and spin reorientation transition in the frustrated kagome lattice antiferromagnet

K. Matan; Bart M. Bartlett; Joel S. Helton; V. Sikolenko; S. Mat'as; Karel Prokes; Ying Chen; Jeffrey W. Lynn; D. Grohol; Taku Sato; Masashi Tokunaga; Daniel G. Nocera; Young S. Lee

Magnetization, specific heat, and neutron scattering measurements were performed to study a magnetic transition in jarosite, a spin-52 kagome lattice antiferromagnet. When a magnetic field is applied perpendicular to the kagome plane, magnetizations in the ordered state show a sudden increase at a critical field H c , indicative of the transition from antiferromagnetic to ferromagnetic states. This sudden increase arises as the spins on alternate kagome planes rotate 180 ° to ferromagnetically align the canted moments along the field direction. The canted moment on a single kagome plane is a result of the Dzyaloshinskii-Moriya interaction. For H H c , the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate, aligning the canted moments along the field direction. Neutron scattering measurements provide the first direct evidence of this 180 ° spin rotation at the transition.


Energy and Environmental Science | 2010

A new one-pot hydrothermal synthesis and electrochemical characterization of Li1+xMn2−yO4 spinel structured compounds

Brendan J. Liddle; Sean M. Collins; Bart M. Bartlett

A simple one step hydrothermal route to Li1+xMn2−yO4 spinel compounds (x = 0.01–0.06, y = 0.02–0.09) via reduction of commercially available potassium permanganate with common organic reductants (alcohols, acetone, hex-1-ene, and isobutyraldehyde) in lithium hydroxide aqueous solutions is developed. The cubic spinel phase with no other impurities can be isolated after short reaction times (∼5 h) at the relatively low temperature of 180 °C. Scanning electron microscopy imaging reveals that the crystalline products have a distribution of sizes; the majority of the sample is composed of smaller particles between 10 and 30 nm. However, there are noticeably larger 100–300 nm interspersed particles—more prevalent in reactions with acetone and isobutyraldehyde. In corresponding benchtop test reactions, UV-Vis spectroscopy shows that the disappearance of MnO4− occurs more rapidly when acetone and isobutyraldehyde are used as reducing agents. Cyclic voltammetry performed on our spinels prepared via hydrothermal synthesis shows three reversible redox processes: a wave with E1/2 of ∼2.9 V (vs. Li/Li+) and two close waves between 4.05 and 4.15 V. Galvanostatic cycling of a cell composed of Li1.02Mn1.96O4 prepared from the oxidation of acetone between 3.5 and 4.4 V demonstrates a specific capacity of 104 mA h g−1 on first discharge, with ∼87% capacity retention (90 mA h g−1) after 100 cycles. The specific capacity of all samples correlates with the rate of disappearance of MnO4− observed in our benchtop reactions, providing a facile way to control particle size and electrochemical behavior.


ACS Applied Materials & Interfaces | 2014

Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries.

Yan Mei Jiang; Kai Xue Wang; Xue Yan Wu; Hao Jie Zhang; Bart M. Bartlett; Jie Sheng Chen

Li4Ti5O12/TiO2 hollow spheres composed of nanoflakes with preferentially exposed Li4Ti5O12 (011) facets have been successfully fabricated via a facile hydrothermal processing route and following calcination. These hollow spheres show good electrochemical performance in terms of high capacity (266 mAh g(-1) at 0.1 A g(-1)), and excellent rate capability (110 mAh g(-1) at 4.0 A g(-1) up to 100 cycles), attributed to unique morphology, preferred facet orientation of the nanoflakes and microscopic structure of the hollow spheres. The preferentially exposed Li4Ti5O12 (011) facets leads to fast lithium insertion/deinsertion processes in materials because of shorten lithium ion diffusion length, proved to be highly effective in improving the electrochemical properties of the hollow spheres. The excellent electrochemical performance makes these hollow spheres promising anode material for lithium ion batteries with high power and energy densities.


Physical Review Letters | 2010

Dynamic scaling in the susceptibility of the spin-1/2 kagome lattice antiferromagnet herbertsmithite.

Joel S. Helton; K. Matan; M. P. Shores; E. A. Nytko; Bart M. Bartlett; Y. Qiu; Daniel G. Nocera; Young S. Lee

The spin-1/2 kagome lattice antiferromagnet herbertsmithite, ZnCu(3)(OH)(6)Cl(2), is a candidate material for a quantum spin liquid ground state. We show that the magnetic response of this material displays an unusual scaling relation in both the bulk ac susceptibility and the low energy dynamic susceptibility as measured by inelastic neutron scattering. The quantity chiT(alpha) with alpha approximately 0.66 can be expressed as a universal function of H/T or omega/T. This scaling is discussed in relation to similar behavior seen in systems influenced by disorder or by the proximity to a quantum critical point.


Physical Review Letters | 2009

Tuning Molecule-Mediated Spin Coupling in Bottom-Up-Fabricated Vanadium-Tetracyanoethylene Nanostructures

Daniel Wegner; Ryan Yamachika; Xiaowei Zhang; Yayu Wang; Tunna Baruah; Mark R. Pederson; Bart M. Bartlett; Jeffrey R. Long; Michael F. Crommie

We have fabricated hybrid magnetic complexes from V atoms and tetracyanoethylene ligands via atomic manipulation with a cryogenic scanning tunneling microscope. Using tunneling spectroscopy we observe spin-polarized molecular orbitals as well as Kondo behavior. For complexes having two V atoms, the Kondo behavior can be quenched for different molecular arrangements, even as the spin-polarized orbitals remain unchanged. This is explained by variable spin-spin (i.e., V-V) ferromagnetic coupling through a single tetracyanoethylene (TCNE) molecule, as supported by density functional calculations.


ACS Applied Materials & Interfaces | 2014

Oxygen Vacancies Lead to Loss of Domain Order, Particle Fracture, and Rapid Capacity Fade in Lithium Manganospinel (LiMn2O4) Batteries

Xiaoguang Hao; Xianke Lin; Wei Lu; Bart M. Bartlett

Spinel-structured lithium manganese oxide (LiMn2O4) has attracted much attention because of its high energy density, low cost, and environmental impact. In this article, structural analysis methods such as powder neutron diffraction (PND), X-ray diffraction (XRD), and high-resolution transmission and scanning electron microscopies (TEM & SEM) reveal the capacity fading mechanism of LiMn2O4 as it relates to the mechanical degradation of the material. Micro-fractures form after the first charge (to 4.45 V vs. Li(+/0)) of a commercial lithium manganese oxide phase, best represented by the formula LiMn2O3.88. Diffraction methods show that the grain size decreases and multiple phases form after 850 electrochemical cycles at 0.2 C current. The microfractures are directly observed through microscopy studies as particle cracks propagate along the (1 1 1) planes, with clear lattice twisting observed along this direction. Long-term galvanostatic cycling results in increased charge-transfer resistance and capacity loss. Upon preparing samples with controlled oxygen contents, LiMn2O4.03 and LiMn2O3.87, the mechanical failure of the lithium manganese oxide can be correlated to the oxygen vacancies in the materials, providing guidance for better synthesis methods.

Collaboration


Dive into the Bart M. Bartlett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. Shores

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. A. Nytko

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joel S. Helton

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

K. Matan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Y. Qiu

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge