Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart M. J. M. Suijkerbuijk is active.

Publication


Featured researches published by Bart M. J. M. Suijkerbuijk.


Cancer Cell | 2015

Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma

Maria Romina Girotti; Filipa Lopes; Natasha Preece; Dan Niculescu-Duvaz; Alfonso Zambon; Lawrence Davies; Steven Whittaker; Grazia Saturno; Amaya Viros; Malin Pedersen; Bart M. J. M. Suijkerbuijk; Delphine Menard; Robert McLeary; Louise Johnson; Laura Fish; Sarah Ejiama; Berta Sanchez-Laorden; Juliane Hohloch; Neil O. Carragher; Kenneth G MacLeod; Garry Ashton; Anna A. Marusiak; Alberto Fusi; John Brognard; Margaret C. Frame; Paul Lorigan; Richard Marais; Caroline J. Springer

Summary BRAF and MEK inhibitors are effective in BRAF mutant melanoma, but most patients eventually relapse with acquired resistance, and others present intrinsic resistance to these drugs. Resistance is often mediated by pathway reactivation through receptor tyrosine kinase (RTK)/SRC-family kinase (SFK) signaling or mutant NRAS, which drive paradoxical reactivation of the pathway. We describe pan-RAF inhibitors (CCT196969, CCT241161) that also inhibit SFKs. These compounds do not drive paradoxical pathway activation and inhibit MEK/ERK in BRAF and NRAS mutant melanoma. They inhibit melanoma cells and patient-derived xenografts that are resistant to BRAF and BRAF/MEK inhibitors. Thus, paradox-breaking pan-RAF inhibitors that also inhibit SFKs could provide first-line treatment for BRAF and NRAS mutant melanomas and second-line treatment for patients who develop resistance.


Journal of Medicinal Chemistry | 2009

Novel potent BRAF inhibitors: toward 1 nM compounds through optimization of the central phenyl ring.

Delphine Menard; Ion Niculescu-Duvaz; Harmen Dijkstra; Dan Niculescu-Duvaz; Bart M. J. M. Suijkerbuijk; Alfonso Zambon; Arnaud Nourry; Esteban Roman; Lawrence Davies; Helen A. Manne; Frank Friedlos; Ruth Kirk; Steven Whittaker; Adrian Liam Gill; Richard David Taylor; Richard Marais; Caroline J. Springer

BRAF, a serine/threonine specific protein kinase that is part of the MAPK pathway and acts as a downstream effector of RAS, is a potential therapeutic target in melanoma. We have developed a series of small-molecule BRAF inhibitors based on a 1H-imidazo[4,5-b]pyridine-2(3H)-one scaffold (ring A) as the hinge binding moiety and a number of substituted phenyl rings C that interact with the allosteric binding site. The introduction of various groups on the central phenyl ring B combined with appropriate A- and C-ring modifications afford very potent compounds that inhibit (V600E)BRAF kinase activity in vitro and oncogenic BRAF signaling in melanoma cells. Substitution on the central phenyl ring of a 3-fluoro, a naphthyl, or a 3-thiomethyl group improves activity to yield compounds with an IC(50) of 1 nM for purified (V600E)BRAF and nanomolar activity in cells.


Journal of Medicinal Chemistry | 2010

Novel hinge binder improves activity and pharmacokinetic properties of BRAF inhibitors.

Alfonso Zambon; Delphine Menard; Bart M. J. M. Suijkerbuijk; Ion Niculescu-Duvaz; Steven Whittaker; Dan Niculescu-Duvaz; Arnaud Nourry; Lawrence Davies; Helen A. Manne; Filipa Lopes; Natasha Preece; Douglas Hedley; Lesley Ogilvie; Ruth S. Kirk; Richard Marais; Caroline J. Springer

Mutated BRAF serine/threonine kinase is implicated in several types of cancer, with particularly high frequency in melanoma and colorectal carcinoma. We recently reported on the development of BRAF inhibitors based on a tripartite A-B-C system featuring an imidazo[4,5]pyridin-2-one group hinge binder. Here we present the design, synthesis, and optimization of a new series of inhibitors with a different A-B-C system that has been modified by the introduction of a range of novel hinge binders (A ring). The optimization of the hinge binding moiety has enabled the development of compounds with low nanomolar potencies in both BRAF inhibition and cellular assays. These compounds display optimal pharmacokinetic properties that warrant further in vivo investigations.


Journal of Medicinal Chemistry | 2009

Pyridoimidazolones as Novel Potent Inhibitors of v-Raf Murine Sarcoma Viral Oncogene Homologue B1 (BRAF)

Dan Niculescu-Duvaz; Catherine Gaulon; Harmen Dijkstra; Ion Niculescu-Duvaz; Alfonso Zambon; Delphine Menard; Bart M. J. M. Suijkerbuijk; Arnaud Nourry; Lawrence Davies; Helen A. Manne; Frank Friedlos; Lesley Ogilvie; Douglas Hedley; Steven Whittaker; Ruth Kirk; Adrian Liam Gill; Richard David Taylor; Florence I. Raynaud; Javier Moreno-Farre; Richard Marais; Caroline J. Springer

BRAF is a serine/threonine kinase that is mutated in a range of cancers, including 50-70% of melanomas, and has been validated as a therapeutic target. We have designed and synthesized mutant BRAF inhibitors containing pyridoimidazolone as a new hinge-binding scaffold. Compounds have been obtained which have low nanomolar potency for mutant BRAF (12 nM for compound 5i) and low micromolar cellular potency against a mutant BRAF melanoma cell line, WM266.4. The series benefits from very low metabolism, and pharmacokinetics (PK) that can be modulated by methylation of the NH groups of the imidazolone, resulting in compounds with fewer H-donors and a better PK profile. These compounds have great potential in the treatment of mutant BRAF melanomas.


Journal of Medicinal Chemistry | 2010

Development of Novel, Highly Potent Inhibitors of V-RAF Murine Sarcoma Viral Oncogene Homologue B1 (BRAF): Increasing Cellular Potency through Optimization of a Distal Heteroaromatic Group

Bart M. J. M. Suijkerbuijk; Ion Niculescu-Duvaz; Catherine Gaulon; Harmen Dijkstra; Dan Niculescu-Duvaz; Delphine Menard; Alfonso Zambon; Arnaud Nourry; Lawrence Davies; Helen A. Manne; Frank Friedlos; Lesley Ogilvie; Douglas Hedley; Filipa Lopes; Natasha Preece; Javier Moreno-Farre; Florence I. Raynaud; Ruth Kirk; Steven Whittaker; Richard Marais; Caroline J. Springer

We describe the design, synthesis, and optimization of a series of new inhibitors of V-RAF murine sarcoma viral oncogene homologue B1 (BRAF), a kinase whose mutant form (V600E) is implicated in several types of cancer, with a particularly high frequency in melanoma. Our previously described inhibitors with a tripartite A-B-C system (where A is a hinge binding pyrido[4,5-b]imidazolone system, B is an aryl spacer group, and C is a heteroaromatic group) were potent against purified (V600E)BRAF in vitro but were less potent in accompanying cellular assays. Substitution of different aromatic heterocycles for the phenyl based C-ring is evaluated herein as a potential means of improving the cellular potencies of these inhibitors. Substituted pyrazoles, particularly 3-tert-butyl-1-aryl-1H-pyrazoles, increase the cellular potencies without detrimental effects on the potency on isolated (V600E)BRAF. Thus, compounds have been synthesized that inhibit, with low nanomolar concentrations, (V600E)BRAF, its downstream signaling in cells [as measured by the reduction of the phosphorylation of extracellular regulated kinase (ERK)], and the proliferation of mutant BRAF-dependent cells. Concomitant benefits are good oral bioavailability and high plasma concentrations in vivo.


Bioorganic & Medicinal Chemistry | 2010

Novel tricyclic pyrazole BRAF inhibitors with imidazole or furan central scaffolds

Dan Niculescu-Duvaz; Ion Niculescu-Duvaz; Bart M. J. M. Suijkerbuijk; Delphine Menard; Alfonso Zambon; Arnaud Nourry; Lawrence Davies; Helen A. Manne; Frank Friedlos; Lesley Ogilvie; Douglas Hedley; Andrew K. Takle; David M. Wilson; Jean-Francois Pons; Tom Coulter; Ruth Kirk; Neus Cantarino; Steven Whittaker; Richard Marais; Caroline J. Springer

Graphical abstract 1j IC50 (BRAF) = 0.24 μM; IC50 (pERK) = 0.58 μM; GI50 (SRB) = 0.87 μM.


Bioorganic & Medicinal Chemistry | 2013

Potent BRAF kinase inhibitors based on 2,4,5-trisubstituted imidazole with naphthyl and benzothiophene 4-substituents

Dan Niculescu-Duvaz; Ion Niculescu-Duvaz; Bart M. J. M. Suijkerbuijk; Delphine Menard; Alfonso Zambon; Lawrence Davies; Jean-Francois Pons; Steven Whittaker; Richard Marais; Caroline J. Springer

The RAS-RAF-MEK-ERK pathway is hyperactivated in 30% of human cancers. BRAF is a serine-threonine kinase, belonging to this pathway that is mutated with high frequency in human melanoma and other cancers thus BRAF is an important therapeutic target in melanoma. We have designed inhibitors of BRAF based on 2,4,5-trisubstituted imidazoles with naphthyl and benzothiophene-4-substituents. Two compounds were discovered to be potent BRAF inhibitors: 1-(6-{2-[4-(2-dimethylamino-ethoxy)phenyl]-5-(pyridin-4-yl)-1H-imidazol-4-yl} benzo[b]thiophen-3-yl)-2,2,2-trifluoroethanol (1i) with BRAF IC(50)=190 nM and with cellular GI(50)=2100 nM, and 6-{2-[4-(2-dimethylamino-ethoxy)-phenyl]-5-pyridin-4-yl-3H-imidazol-4-yl}-naphthalen-1-ol (1q) with IC(50)=9 nM and GI(50)=220 nM.


Journal of Medicinal Chemistry | 2010

BRAF inhibitors based on an imidazo[4,5]pyridin-2-one scaffold and a meta substituted middle ring.

Arnaud Nourry; Alfonso Zambon; Lawrence Davies; Ion Niculescu-Duvaz; Harmen Dijkstra; Delphine Menard; Catherine Gaulon; Dan Niculescu-Duvaz; Bart M. J. M. Suijkerbuijk; Frank Friedlos; Helen A. Manne; Ruth Kirk; Steven Whittaker; Richard Marais; Caroline J. Springer

We recently reported on the development of a novel series of BRAF inhibitors based on a tripartite A-B-C system characterized by a para-substituted central aromatic core connected to an imidazo[4,5]pyridin-2-one scaffold and a substituted urea linker. Here, we present a new series of BRAF inhibitors in which the central phenyl ring connects to the hinge binder and substrate pocket of BRAF with a meta-substitution pattern. The optimization of this new scaffold led to the development of low-nanomolar inhibitors that permits the use of a wider range of linkers and terminal C rings while enhancing the selectivity for the BRAF enzyme in comparison to the para series.


Cancer Research | 2014

Abstract 3704: Novel panRAF inhibitors active in melanomas that are resistant to BRAF-selective, or BRAF-selective/MEK inhibitor combinations

Maria Romina Girotti; Filipa Lopes; Natasha Preece; Dan Niculescu-Duvaz; Alfonso Zambon; Lawrence Davies; Steven Whittaker; Grazia Saturno; Amaya Viros; Malin Pedersen; Bart M. J. M. Suijkerbuijk; Delphine Menard; Robert McLeary; Louise Johnson; Laura Fish; Sarah Ejiama; Berta Sanchez-Laorden; Neil O. Carragher; Kenneth M. MacLeod; Garry Ashton; Anna A. Marusiak; Alberto Fusi; John Brognard; Margaret C. Frame; Paul Lorigan; Caroline J. Springer; Richard Marais

The protein kinase BRAF is mutated ∼40% of human melanomas. BRAF is a component of the RAS/RAF/MEK/ERK pathway and BRAF or MEK inhibitors increase progression-free and overall survival in melanoma patients with BRAF mutations. However, most patients relapse with acquired resistance and ∼20% of patients present intrinsic resistance and do not respond to these drugs. We describe here two novel compounds that target mutant BRAF and wild-type CRAF. Our compounds inhibited the growth of melanoma cells that were resistant to BRAF-selective inhibitors. ERK pathway reactivation is responsible for resistance to BRAF targeted therapies in ∼60% of the patients and in ∼25% of patients resistance is driven by acquisition of mutations in NRAS. We show that our compounds inhibited the growth of melanoma cells that were resistant to BRAF-selective inhibitors due to pathway reactivation mediated by different mechanisms. We show that the drugs were active against patient derived xenografts (PDXs) from patients with acquired or intrinsic resistance to BRAF-selective inhibitors and in whose tumors resistance was associated with ERK pathway reactivation. Further, our compounds are active in a PDX from a patient whose tumor developed acquired resistance to a combination of a BRAF-selective plus a MEK inhibitor and associated with acquisition of an NRAS mutation. Thus, our panRAF inhibitors can inhibit melanomas with different mechanisms of acquired or intrinsic resistance to BRAF-selective and BRAF-selective/MEK inhibitor combinations, potentially providing first-line treatment for naive patients and second-line treatments for a range of relapsed patients. Citation Format: Maria R. Girotti, Filipa Lopes, Natasha Preece, Dan Niculescu-Duvaz, Alfonso Zambon, Lawrence Davies, Steven Whittaker, Grazia Saturno, Amaya Viros, Malin Pedersen, Bart MJM Suijkerbuijk, Delphine Menard, Robert Mcleary, Louise Johnson, Laura Fish, Sarah Ejiama, Berta Sanchez-Laorden, Neil Carragher, Kenneth Macleod, Garry Ashton, Anna Marusiak, Alberto Fusi, John Brognard, Margaret Frame, Paul Lorigan, Caroline J. Springer, Richard Marais. Novel panRAF inhibitors active in melanomas that are resistant to BRAF-selective, or BRAF-selective/MEK inhibitor combinations. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 3704. doi:10.1158/1538-7445.AM2014-3704


Journal of Medicinal Chemistry | 2009

Corrections to Pyridoimidazolones as Novel Potent Inhibitors of v-Raf Murine Sarcoma Viral Oncogene Homologue B1 (BRAF)

Dan Niculescu-Duvaz; Catherine Gaulon; Harmen Dijkstra; Ion Niculescu-Duvaz; Alfonso Zambon; Delphine Menard; Bart M. J. M. Suijkerbuijk; Arnaud Nourry; Lawrence Davies; Helen A. Manne; Frank Friedlos; Lesley Ogilvie; Douglas Hedley; Steven Whittaker; Ruth S. Kirk; Adrian Liam Gill; Richard David Taylor; Florence I. Raynaud; Javier Moreno-Farre; Richard Marais; Caroline J. Springer

Collaboration


Dive into the Bart M. J. M. Suijkerbuijk's collaboration.

Top Co-Authors

Avatar

Lawrence Davies

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Alfonso Zambon

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Caroline J. Springer

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Dan Niculescu-Duvaz

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Delphine Menard

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Richard Marais

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Steven Whittaker

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ion Niculescu-Duvaz

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Arnaud Nourry

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Helen A. Manne

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge