Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart Nijssen is active.

Publication


Featured researches published by Bart Nijssen.


Journal of Climate | 2002

A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States*

Edwin P. Maurer; Andrew W. Wood; Jennifer C. Adam; Dennis P. Lettenmaier; Bart Nijssen

Abstract A frequently encountered difficulty in assessing model-predicted land–atmosphere exchanges of moisture and energy is the absence of comprehensive observations to which model predictions can be compared at the spatial and temporal resolutions at which the models operate. Various methods have been used to evaluate the land surface schemes in coupled models, including comparisons of model-predicted evapotranspiration with values derived from atmospheric water balances, comparison of model-predicted energy and radiative fluxes with tower measurements during periods of intensive observations, comparison of model-predicted runoff with observed streamflow, and comparison of model predictions of soil moisture with spatial averages of point observations. While these approaches have provided useful model diagnostic information, the observation-based products used in the comparisons typically are inconsistent with the model variables with which they are compared—for example, observations are for points or a...


Climatic Change | 2001

Hydrologic Sensitivity of Global Rivers to Climate Change

Bart Nijssen; Greg O'Donnell; Alan F. Hamlet; Dennis P. Lettenmaier

Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.


Journal of Climate | 2001

Predicting the discharge of global rivers

Bart Nijssen; Greg O'Donnell; Dennis P. Lettenmaier; Dag Lohmann; Eric F. Wood

The ability to simulate coupled energy and water fluxes over large continental river basins, in particular streamflow, was largely nonexistent a decade ago. Since then, macroscale hydrological models (MHMs) have been developed, which predict such fluxes at continental and subcontinental scales. Because the runoff formulation in MHMs must be parameterized because of the large spatial scale at which they are implemented, some calibration of model parameters is inevitably necessary. However, calibration is a time-consuming process and quickly becomes infeasible when the modeled area or the number of basins increases. A methodology for model parameter transfer is described that limits the number of basins requiring direct calibration. Parameters initially were estimated for nine large river basins. As a first attempt to transfer parameters, the global land area was grouped by climate zone, and model parameters were transferred within zones. The transferred parameters were then used to simulate the water balance in 17 other continental river basins. Although the parameter transfer approach did not reduce the bias and root-mean-square error (rmse) for each individual basin, in aggregate the transferred parameters reduced the relative (monthly) rmse from 121% to 96% and the mean bias from 41% to 36%. Subsequent direct calibration of all basins further reduced the relative rmse to an average of 70% and the bias to 12%. After transferring the parameters globally, the mean annual global runoff increased 9.4% and evapotranspiration decreased by 5.0% in comparison with an earlier global simulation using uncalibrated parameters. On a continental basis, the changes in runoff and evapotranspiration were much larger. A diagnosis of simulation errors for four basins with particularly poor results showed that most of the error was attributable to bias in the Global Precipitation Climatology Project precipitation products used to drive the MHM.


Water Resources Research | 1997

Streamflow simulation for continental‐scale river basins

Bart Nijssen; Dennis P. Lettenmaier; Xu Liang; Suzanne W. Wetzel; Eric F. Wood

A grid network version of the two-layer variable infiltration capacity (VIC-2L) macroscale hydrologic model is described. VIC-2L is a hydrologically based soil- vegetation-atmosphere transfer scheme designed to represent the land surface in numerical weather prediction and climate models. The grid network scheme allows streamflow to be predicted for large continental rivers. Off-line (observed and estimated surface meteorological and radiative forcings) applications of the model to the Columbia River (1° latitude-longitude spatial resolution) and Delaware River (0.5° resolution) are described. The model performed quite well in both applications, reproducing the seasonal hydrograph and annual flow volumes to within a few percent. Difficulties in reproducing observed streamflow in the arid portion of the Snake River basin are attributed to groundwater-surface water interactions, which are not modeled by VIC-2L.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 1998

Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model

Dag Lohmann; E. Raschke; Bart Nijssen; Dennis P. Lettenmaier

Abstract A grid network version of the two-layer Variable Infiltration Capacity (VIC-2L) macroscale hydrological model is described. The VIC-2L model is a hydrologically-based SVAT (Soil Vegetation Atmospheric Transfer) scheme designed to represent the land surface in numerical weather prediction and climate models. It is coupled to a linear routing scheme which is optimized with measured precipitation and streamflow data and is derived independently from the VIC-2L model. In this way it is possible to utilize streamflow measurements for the validation of coupled atmospheric-hydrological models. A baseflow separation routine is used to derive an equivalent description between the VIC-2L model and the routing model.


Journal of Climate | 2001

Global Retrospective Estimation of Soil Moisture Using the Variable Infiltration Capacity Land Surface Model, 1980–93

Bart Nijssen; Reiner Schnur; Dennis P. Lettenmaier

Abstract A daily set of surface meteorological forcings, model-derived surface moisture fluxes, and state variables for global land areas for the period of 1979–93 is described. The forcing dataset facilitates global simulations and evaluation of land surface parameterizations without relying heavily on GCM output. Daily precipitation and temperature are based on station observations, daily wind speeds are based on National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data, and the remaining meteorological forcing variables (shortwave radiation, longwave radiation, and vapor pressure) are derived from the precipitation and temperature series. The Variable Infiltration Capacity (VIC) land surface model is used to produce a set of derived fluxes and state variables, including snow water equivalent, evapotranspiration, runoff, and soil moisture storage. The main differences between the new dataset and other, similar datasets are the daily time step, the use of a sp...


93rd American Meteorological Society Annual Meeting | 2013

A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions*

Ben Livneh; Eric A. Rosenberg; Chiyu Lin; Bart Nijssen; Vimal Mishra; Kostas Andreadis; Edwin P. Maurer; Dennis P. Lettenmaier

AbstractThis paper describes a publicly available, long-term (1915–2011), hydrologically consistent dataset for the conterminous United States, intended to aid in studies of water and energy exchanges at the land surface. These data are gridded at a spatial resolution of latitude/longitude and are derived from daily temperature and precipitation observations from approximately 20 000 NOAA Cooperative Observer (COOP) stations. The available meteorological data include temperature, precipitation, and wind, as well as derived humidity and downwelling solar and infrared radiation estimated via algorithms that index these quantities to the daily mean temperature, temperature range, and precipitation, and disaggregate them to 3-hourly time steps. Furthermore, the authors employ the variable infiltration capacity (VIC) model to produce 3-hourly estimates of soil moisture, snow water equivalent, discharge, and surface heat fluxes. Relative to an earlier similar dataset by Maurer and others, the improved dataset h...


Global and Planetary Change | 2003

Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons

Laura C. Bowling; Dennis P. Lettenmaier; Bart Nijssen; L. Phil Graham; Douglas B. Clark; Mustapha El Maayar; Richard Essery; Sven Goers; Yeugeniy M. Gusev; Florence Habets; Bart van den Hurk; Jiming Jin; Daniel S. Kahan; Dag Lohmann; Xieyao Ma; Sarith P. P. Mahanama; David Mocko; Olga N. Nasonova; Guo Yue Niu; Patrick Samuelsson; Andrey B. Shmakin; Kumiko Takata; Diana Verseghy; Pedro Viterbo; Youlong Xia; Yongkang Xue; Zong-Liang Yang

Abstract Twenty-one land-surface schemes (LSSs) participated in the Project for Intercomparison of Land-surface Parameterizations (PILPS) Phase 2(e) experiment, which used data from the Torne–Kalix Rivers in northern Scandinavia. Atmospheric forcing data (precipitation, air temperature, specific humidity, wind speed, downward shortwave and longwave radiation) for a 20-year period (1979–1998) were provided to the 21 participating modeling groups for 218 1/4° grid cells that represented the study domain. The first decade (1979–1988) of the period was used for model spin-up. The quality of meteorologic forcing variables is of particular concern in high-latitude experiments and the quality of the gridded dataset was assessed to the extent possible. The lack of sub-daily precipitation, underestimation of true precipitation and the necessity to estimate incoming solar radiation were the primary data concerns for this study. The results from two of the three types of runs are analyzed in this, the first of a three-part paper: (1) calibration–validation runs—calibration of model parameters using observed streamflow was allowed for two small catchments (570 and 1300 km2), and parameters were then transferred to two other catchments of roughly similar size (2600 and 1500 km2) to assess the ability of models to represent ungauged areas elsewhere; and 2) reruns—using revised forcing data (to resolve problems with apparent underestimation of solar radiation of approximately 36%, and certain other problems with surface wind in the original forcing data). Model results for the period 1989–1998 are used to evaluate the performance of the participating land-surface schemes in a context that allows exploration of their ability to capture key processes spatially. In general, the experiment demonstrated that many of the LSSs are able to capture the limitations imposed on annual latent heat by the small net radiation available in this high-latitude environment. Simulated annual average net radiation varied between 16 and 40 W/m2 for the 21 models, and latent heat varied between 18 and 36 W/m2. Among-model differences in winter latent heat due to the treatment of aerodynamic resistance appear to be at least as important as those attributable to the treatment of canopy interception. In many models, the small annual net radiation forced negative sensible heat on average, which varied among the models between −11 and 9 W/m2. Even though the largest evaporation rates occur in the summer (June, July and August), model-predicted snow sublimation in winter has proportionately more influence on differences in annual runoff volume among the models. A calibration experiment for four small sub-catchments of the Torne–Kalix basin showed that model parameters that are typically adjusted during calibration, those that control storage of moisture in the soil column or on the land surface via ponding, influence the seasonal distribution of runoff, but have relatively little impact on annual runoff ratios. Similarly, there was no relationship between annual runoff ratios and the proportion of surface and subsurface discharge for the basin as a whole.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 1998

Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany

Dag Lohmann; E. Raschke; Bart Nijssen; Dennis P. Lettenmaier

Abstract This paper describes the application of a grid network version of the twolayer Variable Infiltration Capacity (VIC-2L) macroscale hydrological model. The VIC-2L model is implemented on a rotated grid, which is compatible with the weather forecast and climate model REMO (Regional Model), a joint project of the German Weather Service (DWD), GKSS Research Centre and the Max-Planck-Institute for Meteorology, Hamburg. Observed surface meteorological data in the Weser River basin are used to force the model off-line on a daily time step. After a 22-month calibration period, simulated and measured streamflow data are compared for a 12-year period. The resulting predictions compare well with observations at daily, monthly and annual time scales. A sensitivity analysis is presented.


Journal of Climate | 2003

Detection of Intensification in Global- and Continental-Scale Hydrological Cycles: Temporal Scale of Evaluation

Alan D. Ziegler; Justin Sheffield; Edwin P. Maurer; Bart Nijssen; Eric F. Wood; Dennis P. Lettenmaier

Diagnostic studies of offline, global-scale Variable Infiltration Capacity (VIC) model simulations of terrestrial water budgets and simulations of the climate of the twenty-first century using the parallel climate model (PCM) are used to estimate the time required to detect plausible changes in precipitation ( P), evaporation (E), and discharge (Q) if the global water cycle intensifies in response to global warming. Given the annual variability in these continental hydrological cycle components, several decades to perhaps more than a century of observations are needed to detect water cycle changes on the order of magnitude predicted by many global climate model studies simulating global warming scenarios. Global increases in precipitation, evaporation, and runoff of 0.6, 0.4, and 0.2 mm yr21 require approximately 30‐45, 25‐35, and 50‐60 yr, respectively, to detect with high confidence. These conservative detection time estimates are based on statistical error criteria (a 5 0.05, b 5 0.10) that are associated with high statistical confidence, 1 2 a (accept hypothesis of intensification when true, i.e., intensification is occurring), and high statistical power, 1 2 b (reject hypothesis of intensification when false, i.e., intensification is not occurring). If one is willing to accept a higher degree of risk in making a statistical error, the detection time estimates can be reduced substantially. Owing in part to greater variability, detection time of changes in continental P, E, and Q are longer than those for the globe. Similar calculations performed for three Global Energy and Water Experiment (GEWEX) basins reveal that minimum detection time for some of these basins may be longer than that for the corresponding continent as a whole, thereby calling into question the appropriateness of using continental-scale basins alone for rapid detection of changes in continental water cycles. A case is made for implementing networks of small-scale indicator basins, which collectively mimic the variability in continental P, E, and Q, to detect acceleration in the global water cycle.

Collaboration


Dive into the Bart Nijssen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martyn P. Clark

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Andrew W. Wood

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Ethan D. Gutmann

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Arnold

United States Army Corps of Engineers

View shared research outputs
Top Co-Authors

Avatar

Joseph Hamman

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Levi D. Brekke

United States Bureau of Reclamation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Roberts

Naval Postgraduate School

View shared research outputs
Researchain Logo
Decentralizing Knowledge