Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart Spee is active.

Publication


Featured researches published by Bart Spee.


Nature Medicine | 2012

Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease

Luke Boulter; Olivier Govaere; Tom Bird; Sorina Radulescu; Antonella Pellicoro; Rachel A. Ridgway; Sang Soo Seo; Bart Spee; Nico van Rooijen; Owen J. Sansom; John P. Iredale; Sally Lowell; Tania Roskams; Stuart J. Forbes

During chronic injury, regeneration of the adult liver becomes impaired. In this context bipotent Hepatic Progenitor Cells (HPCs) become activated and can regenerate both cholangiocytes and hepatocytes. Notch and Wnt signalling during hepatic ontogeny are described, but their roles in HPC mediated liver regeneration are unclear. Here we show in human diseased liver and murine models of the ductular reaction with biliary and hepatocyte regeneration that Notch and Wnt signalling direct HPC specification within the activated myofibroblasts and macrophages HPC niche. During biliary regeneration, Numb is downregulated in HPCs, Jagged1 promotes biliary specification within HPCs. During hepatocyte regeneration, macrophage derived canonical Wnt signalling maintains Numb within HPCs, and Notch signalling is reduced promoting hepatocyte specification. This dominant Wnt state is stimulated through engulfment of hepatocyte debris by niche macrophages and can directly influence the HPCs. Macrophage Wnt3a expression in turn facilitates hepatocyte regeneration – thus exemplifying a novel positive feedback mechanism in adult parenchymal regeneration.During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during chronic liver injury is promoted.


Hepatology | 2008

Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin

Mina Komuta; Bart Spee; Sara Vander Borght; Rita Vos; Chris Verslype; Raymond Aerts; Hirohisa Yano; Tetsuya Suzuki; Masanori Matsuda; Hideki Fujii; Valeer Desmet; Masamichi Kojiro; Tania Roskams

Cholangiolocellular carcinoma (CLC), a subtype of cholangiocellular carcinoma (CC), is thought to originate from the ductules/canals of Hering, where hepatic progenitor cells (HPCs) are located. We investigated the clinicopathological features of 30 CLCs and their relationship to HPCs. We evaluated the expression of hepatocytic markers (hepatocyte paraffin‐1, canalicular polyclonal carcinoembryonic antigen, and CD10), biliary/HPC markers (keratin [K]7, K19, and neural cell adhesion molecule), the adenosine triphosphate binding cassette transporters: multidrug resistance protein 1, multidrug resistance‐associated protein (MRP)1, MRP3, and breast cancer resistance protein, using immunohistochemistry and electron microscopy. In addition, gene expression profiling of CLC was performed and compared with the profile of hepatocellular carcinoma (HCC) with or without HPC features (K19 expression). In surrounding nontumoral tissue, K7‐positive and K19‐positive HPCs/ductular reaction were observed. More than 90% of the tumor was composed of CLC areas that showed small monotonous and/or anastomosing glands, strongly positive for K7 and K19. Especially at the tumor boundary, all cases showed a HCC‐like trabecular area characterized by canalicular CD10/polyclonal carcinoembryonic antigen expression, and submembranous K7 expression, similar to intermediate hepatocytes. K7‐positive/K19‐positive HPCs were also seen. Out of 30 cases, 19 showed papillary and/or clear glandular formation with mucin production, representing CC areas. These three different areas showed transitional zones with each other. We observed an increased expression of MRP1, MRP3, and breast cancer resistance protein in the tumor. Electron microscopy findings in HCC‐like trabecular areas confirmed the presence of HPCs and intermediate hepatocytes. HPC markers, K7, K19, prominin‐1, receptor for stem cell factor c‐kit, octamer‐4 transcription factor, and leukemia inhibitory factor were upregulated (P < 0.05), while albumin was downregulated in CLC (P = 0.007) toward K19‐negative HCCs. Comparison of CLC with K19‐positive HCCs indicated a high homology. Conclusion: All these findings highly suggest a progenitor cell origin of CLC. (HEPATOLOGY 2008.)


Gastroenterology | 2012

Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors

Jesper B. Andersen; Bart Spee; Boris Blechacz; Itzhak Avital; Mina Komuta; Andrew P. Barbour; Elizabeth A. Conner; Matthew C. Gillen; Tania Roskams; Lewis R. Roberts; Valentina M. Factor; Snorri S. Thorgeirsson

BACKGROUND & AIMS Cholangiocarcinoma is a heterogeneous disease with a poor outcome that accounts for 5%-10% of primary liver cancers. We characterized its genomic and genetic features and associated these with patient responses to therapy. METHODS We profiled the transcriptomes from 104 surgically resected cholangiocarcinoma samples collected from patients in Australia, Europe, and the United States; epithelial and stromal compartments from 23 tumors were laser capture microdissected. We analyzed mutations in KRAS, epidermal growth factor receptor (EGFR), and BRAF in samples from 69 tumors. Changes in gene expression were validated by immunoblotting and immunohistochemistry; integrative genomics combined data from the patients with data from 7 human cholangiocarcinoma cell lines, which were then exposed to trastuzumab and lapatinib. RESULTS Patients were classified into 2 subclasses, based on 5-year survival rate (72% vs 30%; χ(2) = 11.61; P < .0007), time to recurrence (13.7 vs 22.7 months; P < .001), and the absence or presence of KRAS mutations (24.6%), respectively. Class comparison identified 4 survival subgroups (SGI-IV; χ(2) = 8.34; P < .03); SGIII was characterized by genes associated with proteasomal activity and the worst prognosis. The tumor epithelium was defined by deregulation of the HER2 network and frequent overexpression of EGFR, the hepatocyte growth factor receptor (MET), pRPS6, and Ki67, whereas stroma was enriched in inflammatory cytokines. Lapatinib, an inhibitor of HER2 and EGFR, was more effective in inhibiting growth of cholangiocarcinoma cell lines than trastuzumab. CONCLUSIONS We provide insight into the pathogenesis of cholangiocarcinoma and identify previously unrecognized subclasses of patients, based on KRAS mutations and increased levels of EGFR and HER2 signaling, who might benefit from dual-target tyrosine kinase inhibitors. The group of patients with the worst prognosis was characterized by transcriptional enrichment of genes that regulate proteasome activity, indicating new therapeutic targets.


Gut | 2010

Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling.

Bart Spee; Guido Carpino; Baukje A. Schotanus; A Katoonizadeh; Sara Vander Borght; Eugenio Gaudio; Tania Roskams

Background Hepatic progenitor cells (HPCs) hold a great potential for therapeutic intervention for currently untreatable liver diseases. However, in human diseases molecular mechanisms involved in proliferation and differentiation of HPCs are poorly understood. Methods and results In the present study activated HPCs and their microenvironment (niche) were investigated in acute and chronic human liver disease by gene-expression analysis and immunohistochemistry/immunofluorescence. Cryopreserved liver tissues were used from patients with parenchymal versus biliary diseases: acute necrotising hepatitis (AH), cirrhosis after hepatitis C infection, and primary biliary cirrhosis in order to study differentiation of HPCs towards hepatocytic versus biliary lineage. Keratin 7 positive HPCs/reactive ductules were captured by means of laser capture microdissection and gene-expression profiles were obtained by using a customised PCR array. Gene expression results were confirmed by immunohistochemistry and immunofluorescence double staining. In all disease groups, microdissected HPCs expressed progenitor cell markers such as KRT7, KRT19, NCAM, ABCG2, LIF, KIT, OCT4, CD44 and TERT. In AH, HPCs were most activated and showed a high expression of prominin-1 (CD133) and α-fetoprotein, and a strong activation of the Wnt pathway. In contrast to parenchymal diseases, HPCs in primary biliary cirrhosis (biliary differentiation) showed a high activation of Notch signalling. Conclusion A distinct pattern of HPC surface markers was found between acute and chronic liver diseases. Similar to what is known from animal experiments, strong evidence has been found signifying the role of Wnt signalling in proliferation of human HPCs whereas Notch signalling is involved in biliary differentiation. These pathways can be targeted in future therapies.


Gut | 2014

Keratin 19: a key role player in the invasion of human hepatocellular carcinomas

Olivier Govaere; Mina Komuta; Johannes Berkers; Bart Spee; Carl Janssen; Francesca de Luca; Aezam Katoonizadeh; Jasper Wouters; Leon Van Kempen; Anne Durnez; Chris Verslype; Joery De Kock; Vera Rogiers; Leo A. van Grunsven; Baki Topal; Jacques Pirenne; Hugo Vankelecom; Frederik Nevens; Joost van den Oord; Massimo Pinzani; Tania Roskams

Objective Keratin (K)19, a biliary/hepatic progenitor cell (HPC) marker, is expressed in a subset of hepatocellular carcinomas (HCC) with poor prognosis. The underlying mechanisms driving this phenotype of K19-positive HCC remain elusive. Design Clinicopathological value of K19 was compared with EpCAM, and α-fetoprotein, in a Caucasian cohort of 242 consecutive patients (167 surgical specimens, 75 needle biopsies) with different underlying aetiologies. Using microarrays and microRNA profiling the molecular phenotype of K19-positive HCCs was identified. Clinical primary HCC samples were submitted to in vitro invasion assays and to side population analysis. HCC cell lines were transfected with synthetic siRNAs against KRT19 and submitted to invasion and cytotoxicity assays. Results In the cohort of surgical specimens, K19 expression showed the strongest correlation with increased tumour size (p<0.01), decreased tumour differentiation (p<0.001), metastasis (p<0.05) and microvascular invasion (p<0.001). The prognostic value of K19 was also confirmed in a set of 75 needle biopsies. Profiling showed that K19-positive HCCs highly express invasion-related/metastasis-related markers (eg, VASP, TACSTD2, LAMB1, LAMC2, PDGFRA), biliary/HPC markers (eg, CD133, GSTP1, NOTCH2, JAG1) and members of the miRNA family 200 (eg, miR-141, miR-200c). In vitro, primary human K19-positive tumour cells showed increased invasiveness, and reside in the chemoresistant side population. Functionally, K19/KRT19 knockdown results in reduced invasion, loss of invadopodia formation and decreased resistance to doxorubicin, 5-fluorouracil and sorafenib. Conclusions Giving the distinct invasive properties, the different molecular profile and the poor prognostic outcome, K19-positive HCCs should be considered as a seperate entity of HCCs.


Veterinary Immunology and Immunopathology | 2009

A GeNorm algorithm-based selection of reference genes for quantitative real-time PCR in skin biopsies of healthy dogs and dogs with atopic dermatitis

Yvette M. Schlotter; Eveline Z. Veenhof; Bas Brinkhof; Victor P.M.G. Rutten; Bart Spee; Ton Willemse; Louis C. Penning

Quantitative real time PCR (Q-PCR) is the method of choice to study mRNA expression levels. Since Q-PCR is very sensitive, normalization of the data with stably expressed reference genes if of utmost importance. The stability of reference genes depends on the tissue and the species of interest. Therefore, evaluation of the stability of reference genes must be performed for each new tissue and species under study. The stability of B2M, GAPDH, HPRT, SRPR, hnRNPH, GUSB, RPL8, RPS5, and RPS19 was analyzed with the GeNorm software in snap frozen canine skin biopsies. Healthy dogs (n=7) and dogs with confirmed atopic dermatitis (n=28) were included. Lesional and non-lesional skin was analyzed. The study indicated that the most appropriate reference genes in canine skin are the ribosomal gene products RPL8, RPS5 and RPS19 besides GUSB and HPRT. As little as three reference genes will reveal highly reliable Q-PCR calculations.


Journal of Veterinary Internal Medicine | 2006

Copper Metabolism and Oxidative Stress in Chronic Inflammatory and Cholestatic Liver Diseases in Dogs

Bart Spee; Brigitte Arends; Ted S.G.A.M. van den Ingh; Louis C. Penning; Jan Rothuizen

Inherited defects of copper metabolism resulting in hepatic copper accumulation and oxidative-stress might cause breed-associated forms of hepatitis. Biliary excretion is the major elimination route of copper, therefore increased hepatic copper concentrations could also be caused by cholestasis. The aim of this study was to find criteria to determine whether copper-accumulation is primary or occurs secondary to hepatitis. Liver samples of Bedlington Terriers with copper toxicosis (CT), breeds with non-copper-associated chronic extrahepatic cholestasis (EC) or chronic hepatitis (CH), and healthy dogs were used. Copper metabolism was analyzed by means of histochemical staining (copper concentration) and quantitative reverse transcriptase polymerase chain reaction (Q-PCR) on copper excretion/storage (ATOX1, COX17, ATP7A, ATP7B, CP, MT1A, MURR1, XIAP). Oxidative stress was measured by determining GSH/GSSG ratios and gene-expression (SOD1, CAT, GSHS, GPX1, CCS, p27KIP, Bcl-2). Results revealed 5+ copper in CT, but no or 1-2+ copper in EC and CH. Most gene products for copper metabolism remained at concentrations similar to healthy dogs. Three clear exceptions were observed in CT: 3-fold mRNA increase of ATP7A and XIAP and complete absence of MURRI. The only quantitative differences between the diseased and the control groups were in oxidative stress, evidenced by reductions in all GSH/GSSG ratios. We conclude that 3+ or higher histochemical detection of copper indicates a primary copper storage disease. The expression profile of copper-associated genes can be used as a reference for future studies on copper-associated diseases. All 3 diseases have reduced protection against oxidative stress, opening a rationale to use antioxidants as possible therapy.


Molecular Cancer | 2006

Specific down-regulation of XIAP with RNA interference enhances the sensitivity of canine tumor cell-lines to TRAIL and doxorubicin

Bart Spee; Martijn Db Jonkers; Brigitte Arends; Gerard R. Rutteman; Jan Rothuizen; Louis C. Penning

BackgroundApoptosis resistance occurs in various tumors. The anti-apoptotic XIAP protein is responsible for inhibiting apoptosis by reducing caspase-3 activation. Our aim is to evaluate whether RNA inhibition against XIAP increases the sensitivity of canine cell-lines for chemotherapeutics such as TRAIL and doxorubicin. We used small interfering RNAs (siRNA) directed against XIAP in three cell-lines derived from bile-duct epithelia (BDE), mammary carcinoma (P114), and osteosarcoma (D17). These cell-lines represent frequently occurring canine cancers and are highly comparable to their human counterparts. XIAP down-regulation was measured by means of quantitative PCR (Q-PCR) and Western blotting. The XIAP depleted cells were treated with a serial dilution of TRAIL or doxorubicin and compared to mock- and nonsense-treated controls. Viability was measured with a MTT assay.ResultsAll XIAP siRNA treated cell-lines showed a mRNA down-regulation over 80 percent. Western blot analysis confirmed mRNA measurements. No compensatory effect of IAP family members was seen in XIAP depleted cells. The sensitivity of XIAP depleted cells for TRAIL was highest in BDE cells with an increase in the ED50 of 14-fold, compared to mock- and nonsense-treated controls. The sensitivity of P114 and D17 cell-lines increased six- and five-fold, respectively. Doxorubicin treatment in XIAP depleted cells increased sensitivity in BDE cells more than eight-fold, whereas P114 and D17 cell-lines showed an increase in sensitivity of three- and five-fold, respectively.ConclusionXIAP directed siRNAs have a strong sensitizing effect on TRAIL-reduced cell-viability and a smaller but significant effect with the DNA damaging drug doxorubicin. The increase in efficacy of chemotherapeutics with XIAP depletion provides the rationale for the use of XIAP siRNAs in insensitive canine tumors.


Comparative Hepatology | 2005

Differential expression of copper-associated and oxidative stress related proteins in a new variant of copper toxicosis in Doberman pinschers

Bart Spee; P.J.J. Mandigers; Brigitte Arends; P. Bode; Ted S.G.A.M. van den Ingh; Gaby Hoffmann; Jan Rothuizen; Louis C. Penning

BackgroundThe role of copper accumulation in the onset of hepatitis is still unclear. Therefore, we investigated a spontaneous disease model of primary copper-toxicosis in Doberman pinschers so to gain insights into the pathophysiology of copper toxicosis, namely on genes involved in copper metabolism and reactive oxygen species (ROS) defences.ResultsWe used quantitative real-time PCR to determine differentially expressed genes within a target panel, investigating different groups ranging from copper-associated subclinical hepatitis (CASH) to a clinical chronic hepatitis with high hepatic copper concentrations (Doberman hepatitis, DH). Furthermore, a non-copper associated subclinical hepatitis group (N-CASH) with normal hepatic copper concentrations was added as a control. Most mRNA levels of proteins involved in copper binding, transport, and excretion were around control values in the N-CASH and CASH group. In contrast, many of these (including ATP7A, ATP7B, ceruloplasmin, and metallothionein) were significantly reduced in the DH group. Measurements on defences against oxidative stress showed a decrease in gene-expression of superoxide dismutase 1 and catalase in both groups with high copper. Moreover, the anti-oxidative glutathione molecule was clearly reduced in the DH group.ConclusionIn the DH group the expression of gene products involved in copper efflux was significantly reduced, which might explain the high hepatic copper levels in this disease. ROS defences were most likely impaired in the CASH and DH group. Overall, this study describes a new variant of primary copper toxicosis and could provide a molecular basis for equating future treatments in dog and in man.


Comparative Hepatology | 2005

Regenerative and fibrotic pathways in canine hepatic portosystemic shunt and portal vein hypoplasia, new models for clinical hepatocyte growth factor treatment.

Bart Spee; Louis C. Penning; Ted S.G.A.M. van den Ingh; Brigitte Arends; Jooske IJzer; Frederik J. van Sluijs; Jan Rothuizen

BackgroundWe analyzed two spontaneous dog diseases characterized by subnormal portal perfusion and reduced liver growth: (i) congenital portosystemic shunts (CPSS) without fibrosis and (ii) primary portal vein hypoplasia (PPVH), a disease associated with fibrosis. These pathologies, that lack inflammation or cholestasis, may represent simplified models to study liver growth and fibrosis. To investigate the possible use of those models for hepatocyte growth factor (HGF) treatment, we studied the functionality of HGF signaling in CPSS and PPVH dogs and compared this to aged-matched healthy controls.ResultsWe used quantitative real-time polymerase chain reaction (Q-PCR) to analyze the mRNA expression of HGF, transforming growth factor β1 (TGF-β1), and relevant mediators in liver biopsies from cases with CPSS or PPVH, in comparison with healthy control dogs. CPSS and PPVH were associated with a decrease in mRNA expression of HGF and of MET proto-oncogene (c-MET). Western blot analysis confirmed the Q-PCR results and showed that intracellular signaling components (protein kinase B/Akt, ERK1/2, and STAT3) were functional. The TGF-β1 mRNA levels were unchanged in CPSS whereas there was a 2-fold increase in PPVH indicating an active TGF-β1 pathway, consistent with the observation of fibrosis seen in PPVH. Western blots on TGF-β1 and phosphorylated Smad2 confirmed an activated pro-fibrotic pathway in PPVH. Furthermore, Q-PCR showed an increase in the amount of collagen I present in PPVH compared to CPSS and control, which was confirmed by Western blot analysis.ConclusionThe pathophysiological differences between CPSS and PPVH can adequately be explained by the Q-PCR measurements and Western blots. Although c-MET levels were reduced, downstream signaling seemed to be functional and provides a rational for HGF-supplementation in controlled studies with CPSS and PPVH. Furthermore both diseases may serve as simplified models for comparison with more complex chronic inflammatory diseases and cirrhosis.

Collaboration


Dive into the Bart Spee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tania Roskams

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge