Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart van de Sluis is active.

Publication


Featured researches published by Bart van de Sluis.


Nature | 2011

Clearance of p16 Ink4a -positive senescent cells delays ageing-associated disorders

Darren J. Baker; Tobias Wijshake; Tamar Tchkonia; Nathan K. LeBrasseur; Bennett G. Childs; Bart van de Sluis; James L. Kirkland; Jan M. van Deursen

Advanced age is the main risk factor for most chronic diseases and functional deficits in humans, but the fundamental mechanisms that drive ageing remain largely unknown, impeding the development of interventions that might delay or prevent age-related disorders and maximize healthy lifespan. Cellular senescence, which halts the proliferation of damaged or dysfunctional cells, is an important mechanism to constrain the malignant progression of tumour cells. Senescent cells accumulate in various tissues and organs with ageing and have been hypothesized to disrupt tissue structure and function because of the components they secrete. However, whether senescent cells are causally implicated in age-related dysfunction and whether their removal is beneficial has remained unknown. To address these fundamental questions, we made use of a biomarker for senescence, p16Ink4a, to design a novel transgene, INK-ATTAC, for inducible elimination of p16Ink4a-positive senescent cells upon administration of a drug. Here we show that in the BubR1 progeroid mouse background, INK-ATTAC removes p16Ink4a-positive senescent cells upon drug treatment. In tissues—such as adipose tissue, skeletal muscle and eye—in which p16Ink4a contributes to the acquisition of age-related pathologies, life-long removal of p16Ink4a-expressing cells delayed onset of these phenotypes. Furthermore, late-life clearance attenuated progression of already established age-related disorders. These data indicate that cellular senescence is causally implicated in generating age-related phenotypes and that removal of senescent cells can prevent or delay tissue dysfunction and extend healthspan.


Nature Communications | 2014

Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

Diana Jurk; Caroline L. Wilson; João F. Passos; Fiona Oakley; Clara Correia-Melo; Laura C. Greaves; Gabriele Saretzki; Chris Fox; Conor Lawless; Rhys Anderson; Graeme Hewitt; Sylvia L.F. Pender; Nicola Fullard; Glyn Nelson; Jelena Mann; Bart van de Sluis; Derek A. Mann; Thomas von Zglinicki

Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1−/− fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1−/− tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor.


The EMBO Journal | 2004

A novel role for XIAP in copper homeostasis through regulation of MURR1

Ezra Burstein; Lakshmanan Ganesh; Robert D. Dick; Bart van de Sluis; John C. Wilkinson; Leo W. J. Klomp; Cisca Wijmenga; George J. Brewer; Gary J. Nabel; Colin S. Duckett

XIAP is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases. Here we demonstrate a novel role for XIAP in the control of intracellular copper levels. XIAP was found to interact with MURR1, a factor recently implicated in copper homeostasis. XIAP binds to MURR1 in a manner that is distinct from that utilized by XIAP to bind caspases, and consistent with this, MURR1 did not affect the antiapoptotic properties of XIAP. However, cells and tissues derived from Xiap‐deficient mice were found to contain reduced copper levels, while suppression of MURR1 resulted in increased intracellular copper in cultured cells. Consistent with these opposing effects, XIAP was observed to negatively regulate MURR1 protein levels by the formation of K48 polyubiquitin chains on MURR1 that promote its degradation. These findings represent the first described phenotypic alteration in Xiap‐deficient mice and demonstrate that XIAP can function through MURR1 to regulate copper homeostasis.


European Heart Journal | 2017

Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel

Brian A. Ference; Henry N. Ginsberg; Ian T. Graham; Kausik K. Ray; Chris J. Packard; E. Bruckert; Robert A. Hegele; Ronald M. Krauss; Frederick J. Raal; Heribert Schunkert; Gerald F. Watts; Jan Borén; Sergio Fazio; Jay D. Horton; Luis Masana; Stephen J. Nicholls; Børge G. Nordestgaard; Bart van de Sluis; Marja-Riitta Taskinen; Lale Tokgozoglu; Ulf Landmesser; Ulrich Laufs; Olov Wiklund; Jane K Stock; M. John Chapman; Alberico L. Catapano

Abstract Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.


Biochemical Journal | 2007

Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

Peter V. E. van den Berghe; Dineke E. Folmer; Helga E.M. Malingré; Ellen van Beurden; Adriana E M Klomp; Bart van de Sluis; Maarten Merkx; Ruud Berger; Leo W. J. Klomp

High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis, epitope-tagged hCTR2 was transiently expressed in different cell lines. hCTR2-vsvG (vesicular-stomatitis-virus glycoprotein) predominantly migrated as a 17 kDa protein after imunoblot analysis, consistent with its predicted molecular mass. Chemical cross-linking resulted in the detection of higher-molecular-mass complexes containing hCTR2-vsvG. Furthermore, hCTR2-vsvG was co-immunoprecipitated with hCTR2-FLAG, suggesting that hCTR2 can form multimers, like hCTR1. Transiently transfected hCTR2-eGFP (enhanced green fluorescent protein) was localized exclusively to late endosomes and lysosomes, and was not detected at the plasma membrane. To functionally address the role of hCTR2 in copper metabolism, a novel transcription-based copper sensor was developed. This MRE (metal-responsive element)-luciferase reporter contained four MREs from the mouse metallothionein 1A promoter upstream of the firefly luciferase open reading frame. Thus the MRE-luciferase reporter measured bioavailable cytosolic copper. Expression of hCTR1 resulted in strong activation of the reporter, with maximal induction at 1 muM CuCl2, consistent with the K(m) of hCTR1. Interestingly, expression of hCTR2 significantly induced MRE-luciferase reporter activation in a copper-dependent manner at 40 and 100 microM CuCl2. Taken together, these results identify hCTR2 as an oligomeric membrane protein localized in lysosomes, which stimulates copper delivery to the cytosol of human cells at relatively high copper concentrations. This work suggests a role for endosomal and lysosomal copper pools in the maintenance of cellular copper homoeostasis.


Nature Cell Biology | 2013

Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan

Darren J. Baker; Meelad M. Dawlaty; Tobias Wijshake; Karthik B. Jeganathan; Liviu Malureanu; Janine H. van Ree; Ruben Crespo-Diaz; Santiago Reyes; Lauren Seaburg; Virginia Smith Shapiro; Atta Behfar; Andre Terzic; Bart van de Sluis; Jan M. van Deursen

The BubR1 gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule–kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule–kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.


Journal of Hepatology | 2003

The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis.

Adriana E M Klomp; Bart van de Sluis; Leo W. J. Klomp; Cisca Wijmenga

BACKGROUND/AIMS Copper toxicosis (CT) in Bedlington terriers is an autosomal recessive disorder characterized by massive lysosomal copper accumulation in livers of affected dogs, and a defect in the biliary excretion of this metal. We propose that MURR1, the gene defective in canine CT, has a role in the regulation of copper excretion into bile during copper overload. METHODS Polyclonal antibodies raised against full-length recombinant human MURR1 were used for immunoblot analysis and indirect immunofluorescence studies. RESULTS Using Western blot analysis, these antibodies abundantly detected MURR1 as a 23 kDa protein in liver extracts of mice and dogs, but MURR1 was undetectable in the livers of affected Bedlington terriers. MURR1 was also detected in different tissues and cell lines; in cell lines the protein was found both in cytosol and membrane preparations. Consistent with this observation, indirect immunofluorescence staining revealed that in some cells MURR1 was associated with a vesicular compartment diffusely localized throughout the cell. CONCLUSIONS The genomic deletion in MURR1 results in complete absence of MURR1 protein. Based on the unanticipated subcellular localization, our results suggest a role for MURR1 in the regulation of vesicular copper sequestration during copper overload.


Molecular and Cellular Biology | 2007

Increased activity of hypoxia-inducible factor 1 is associated with early embryonic lethality in Commd1 null mice.

Bart van de Sluis; Patricia Muller; Karen Duran; Amy Chen; Arjan J. Groot; Leo W. J. Klomp; Paul P. Liu; Cisca Wijmenga

ABSTRACT COMMD1 (previously known as MURR1) belongs to a novel family of proteins termed the copper metabolism gene MURR1 domain (COMMD) family. The 10 COMMD family members are well conserved between vertebrates, but the functions of most of the COMMD proteins are unknown. We recently established that COMMD1 is associated with the hepatic copper overload disorder copper toxicosis in Bedlington terriers. Recent in vitro studies indicate that COMMD1 has multiple functions, including sodium transport and NF-κB signaling. To elucidate the function of Commd1 in vivo, we generated homozygous Commd1 null (Commd1−/−) mice. Commd1−/− embryos died in utero between 9.5 and 10.5 days postcoitum (dpc), their development was generally retarded, and placenta vascularization was absent. Microarray analysis identified transcriptional upregulation of hypoxia-inducible factor 1 (HIF-1) target genes in 9.5-dpc Commd1−/− embryos compared to normal embryos, a feature that was associated with increased Hif-1α stability. Consistent with these observations, COMMD1 physically associates with HIF-1α and inhibits HIF-1α stability and HIF-1 transactivation in vitro. Thus, this study identifies COMMD1 as a novel regulator of HIF-1 activity and shows that Commd1 deficiency in mice leads to embryonic lethality associated with dysregulated placenta vascularization.


Biochemical Journal | 2006

Characterization of COMMD protein–protein interactions in NF-κB signalling

Prim de Bie; Bart van de Sluis; Ezra Burstein; Karen Duran; Ruud Berger; Colin S. Duckett; Cisca Wijmenga; Leo W. J. Klomp

COMMD [copper metabolism gene MURR1 (mouse U2af1-rs1 region 1) domain] proteins constitute a recently identified family of NF-κB (nuclear factor κB)-inhibiting proteins, characterized by the presence of the COMM domain. In the present paper, we report detailed investigation of the role of this protein family, and specifically the role of the COMM domain, in NF-κB signalling through characterization of protein–protein interactions involving COMMD proteins. The small ubiquitously expressed COMMD6 consists primarily of the COMM domain. Therefore COMMD1 and COMMD6 were analysed further as prototype members of the COMMD protein family. Using specific antisera, interaction between endogenous COMMD1 and COMMD6 is described. This interaction was verified by independent techniques, appeared to be direct and could be detected throughout the whole cell, including the nucleus. Both proteins inhibit TNF (tumour necrosis factor)-induced NF-κB activation in a non-synergistic manner. Mutation of the amino acid residues Trp24 and Pro41 in the COMM domain of COMMD6 completely abolished the inhibitory effect of COMMD6 on TNF-induced NF-κB activation, but this was not accompanied by loss of interaction with COMMD1, COMMD6 or the NF-κB subunit RelA. In contrast with COMMD1, COMMD6 does not bind to IκBα (inhibitory κBα), indicating that both proteins inhibit NF-κB in an overlapping, but not completely similar, manner. Taken together, these data support the significance of COMMD protein–protein interactions and provide new mechanistic insight into the function of this protein family in NF-κB signalling.


European Heart Journal | 2015

The NADPH oxidase Nox4 has anti-atherosclerotic functions

Christoph Schürmann; Flavia Rezende; Christoph Kruse; Yakub Yasar; Oliver Löwe; Christian Fork; Bart van de Sluis; Rolf Bremer; Norbert Weissmann; Ajay M. Shah; Hanjoong Jo; Ralf P. Brandes; Katrin Schröder

AIMS Oxidative stress is thought to be a risk for cardiovascular disease and NADPH oxidases of the Nox family are important producers of reactive oxygen species. Within the Nox family, the NADPH oxidase Nox4 has a unique position as it is constitutively active and produces H2O2 rather than [Formula: see text] . Nox4 is therefore incapable of scavenging NO and its low constitutive H2O2 production might even be beneficial. We hypothesized that Nox4 acts as an endogenous anti-atherosclerotic enzyme. METHODS AND RESULTS Tamoxifen-induced Nox4-knockout mice were crossed with ApoE⁻/⁻ mice and spontaneous atherosclerosis under regular chow as well as accelerated atherosclerosis in response to partial carotid artery ligation under high-fat diet were determined. Deletion of Nox4 resulted in increased atherosclerosis formation in both models. Mechanistically, pro-atherosclerotic and pro-inflammatory changes in gene expression were observed prior to plaque development. Moreover, inhibition of Nox4 or deletion of the enzyme in the endothelium but not in macrophages resulted in increased adhesion of macrophages to the endothelial surface. CONCLUSIONS The H2O2-producing NADPH oxidase Nox4 is an endogenous anti-atherosclerotic enzyme. Nox4 inhibitors, currently under clinical evaluation, should be carefully monitored for cardiovascular side-effects.

Collaboration


Dive into the Bart van de Sluis's collaboration.

Top Co-Authors

Avatar

Cisca Wijmenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Marten H. Hofker

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ezra Burstein

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Niels J. Kloosterhuis

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jan Albert Kuivenhoven

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Paulina Bartuzi

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Debby P.Y. Koonen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge