Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bartek Zuber is active.

Publication


Featured researches published by Bartek Zuber.


Journal of Immunology | 2004

Intranasal HIV-1-gp160-DNA/gp41 peptide prime-boost immunization regimen in mice results in long-term HIV-1 neutralizing humoral mucosal and systemic immunity.

Claudia Devito; Bartek Zuber; Ulf Schröder; Reinhold Benthin; Kenji Okuda; Kristina Broliden; Britta Wahren; Jorma Hinkula

An intranasal DNA vaccine prime followed by a gp41 peptide booster immunization was compared with gp41 peptide and control immunizations. Serum HIV-1-specific IgG and IgA as well as IgA in feces and vaginal and lung secretions were detected after immunizations. Long-term humoral immunity was studied for up to 12 mo after the booster immunization by testing the presence of HIV-1 gp41- and CCR5-specific Abs and IgG/IgA-secreting B lymphocytes in spleen and regional lymph nodes in immunized mice. A long-term IgA-specific response in the intestines, vagina, and lungs was obtained in addition to a systemic immune response. Mice immunized only with gp41 peptides and L3 adjuvant developed a long-term gp41-specific serum IgG response systemically, although over a shorter period (1–9 mo), and long-term mucosal gp41-specific IgA immunity. HIV-1-neutralizing serum Abs were induced that were still present 12 mo after booster immunization. HIV-1 SF2-neutralizing fecal and lung IgA was detectable only in the DNA-primed mouse groups. Intranasal DNA prime followed by one peptide/L3 adjuvant booster immunization, but not a peptide prime followed by a DNA booster, was able to induce B cell memory and HIV-1-neutralizing Abs for at least half of a mouse’s life span.


Journal of Virology | 2006

Loss of Cell Membrane Integrity in Puumala Hantavirus-Infected Patients Correlates with Levels of Epithelial Cell Apoptosis and Perforin

Jonas Klingström; Jonas Hardestam; Malin Stoltz; Bartek Zuber; Åke Lundkvist; Stig Linder; Clas Ahlm

ABSTRACT Hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome are two diseases caused by hantaviruses. Capillary leakage is a hallmark of hantavirus infection. Pathogenic hantaviruses are not cytotoxic, but elevated levels of serum lactate dehydrogenase (LDH), indicative of cellular damage, are observed in patients. We report increased levels of serum perforin, granzyme B, and the epithelial cell apoptosis marker caspase-cleaved cytokeratin-18 during Puumala hantavirus infection. Significant correlation was observed between the levels of LDH and perforin and the levels of LDH and caspase-cleaved cytokeratin-18, suggesting that tissue damage is due to an immune reaction and that epithelial apoptosis contributed significantly to the damage.


Gene Therapy | 2004

Multi-subtype gp160 DNA immunization induces broadly neutralizing anti-HIV antibodies

Erik Rollman; Jorma Hinkula; J Arteaga; Bartek Zuber; Anne Kjerrström; Margaret A. Liu; Britta Wahren; Karl Ljungberg

A highly desirable feature for an human immunodeficiency virus type 1 (HIV-1) vaccine is the ability to induce broadly reactive anti-envelope antibodies that can neutralize primary HIV-1 isolates. Two immunizations with an HIV-1 envelope-encoding plasmid together with recombinant granulocyte–macrophage colony-stimulating factor (rGM-CSF) resulted in high antibody titers in mice. The antibody induction was further enhanced after immunization with genes encoding HIV-1 envelopes originating from subtypes A, B and C. The sera from these animals were able to neutralize A, B and C viral isolates, whereas the sera from animals immunized solely with subtype B DNA neutralized only subtype B virus. The combined DNA vaccine gave serum antibodies with broad recognition of HIV-1 envelope epitopes as determined by peptide mapping. Cell-mediated immunity was not compromised by the increased humoral immunity. This demonstrates the ability of multiple envelope genes to induce the desired antibody response against several subtypes. Moreover, it documents the ability of rGM-CSF to enhance the potency of such a vaccine when given simultaneously. The strategy may be useful for making an HIV vaccine more potent and broadly effective against strains of different clades.


Intervirology | 2000

DNA-Encoding Enzymatically Active HIV-1 Reverse Transcriptase, but Not the Inactive Mutant, Confers Resistance to Experimental HIV-1 Challenge

Maria G. Isaguliants; Natalia N. Petrakova; Bartek Zuber; Katja Pokrovskaya; Rinat Gizatullin; Dmitrii A. Kostyuk; Anne Kjerrström; Gösta Winberg; S. N. Kochetkov; Jorma Hinkula; Britta Wahren

The present study was undertaken to examine the immunogenicity of a single plasmid DNA representing the reverse transcriptase (RT) of HIV-1. Plasmids containing the enzymatically active RT as well as a mutated nonenzymatically active RT with nucleotide (nt)-binding motifs of YMDD and YMLL, respectively, were used to immunize mice. Both constructs induced similar good antibody and T cell responses, with a tendency towards antibody directed to peptides representing the active and mutated sites. Immunized mice were challenged with a murine pseudotype HIV-1/MuLV infected spleen cells. Seven out of 10 mice immunized with RT had no recoverable HIV-1, while 10 individuals immunized with the RT mutant and all the 18 controls had high levels of recoverable HIV-1. This indicates that mutation of RT reduces the desired immunogenicity.


Journal of Immunology | 2007

Killing Kinetics of Simian Immunodeficiency Virus-Specific CD8+ T Cells: Implications for HIV Vaccine Strategies

Erik Rollman; Miranda Z. Smith; Andrew G. Brooks; Damian F. J. Purcell; Bartek Zuber; Ian A. Ramshaw; Stephen J. Kent

Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-γ were simultaneously studied in SIV Gag164–172 KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-γ and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIVmac251 challenge of prime-boost-vaccinated macaques, albeit with less IFN-γ expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.


Cancer Gene Therapy | 2003

Signal sequence deletion and fusion to tetanus toxoid epitope augment antitumor immune responses to a human carcinoembryonic antigen (CEA) plasmid DNA vaccine in a murine test system.

Lars H. Lund; Karolina Andersson; Bartek Zuber; Anneli Karlsson; Gunnel Engström; Jorma Hinkula; Britta Wahren; Gösta Winberg

Carcinoembryonic antigen (CEA, CEACAM5) is expressed on several human carcinomas including colon cancer. CEA contains signal peptides that target the protein through the endoplasmic reticulum and to the cell membrane. We constructed a plasmid DNA vaccine encoding a truncated CEA (ΔCEA), devoid of its signal peptides, and demonstrated that it was retained inside the cell, while full-length CEA (wtCEA) was expressed on the membrane. We hypothesized that intracellular retention of ΔCEA would enhance MHC class I presentation of CEA peptides, thus favoring cellular immune responses. In addition, a promiscuous T-helper epitope (Q830-L844 of tetanus toxoid) was fused to the N-terminal of the truncated CEA gene (tetΔCEA). C57BL/6 mice immunized with DNA encoding wtCEA or tetΔCEA developed both humoral and cellular immune responses to CEA. SCID mice transplanted with spleen cells from tetΔCEA but not wtCEA-immunized C57BL/6 mice showed strong suppression of tumor growth after inoculation of human CEA-expressing colon carcinoma cells. Immune spleen cell populations depleted for either B, T or both B and T cells were active, indicating that effector cells might also reside in other populations. The present approach to manipulating antigen presentation may open new possibilities for immunotherapy against colon and other CEA-secreting carcinomas.


AIDS Research and Human Retroviruses | 2001

An in vivo model for HIV resistance development

Bartek Zuber; Disa Böttiger; Reinhold Benthin; Peter ten Haaft; Jonathan L. Heeney; Britta Wahren; Bo Öberg

Treatment of human immunodeficiency virus (HIV-1) with drugs targeted to the reverse transcriptase (RT) rapidly selects for drug-resistant virus. It is essential to develop a suitable animal model that allows the study of the emergence and reversal of drug resistance. A monkey model was previously developed on the basis of a hybrid virus (RT-SHIV) of simian immunodeficiency virus (SIV) with its RT exchanged for HIV-1 RT. In the present study cynomolgus monkeys infected with RT-SHIV were treated with varying doses of the non-nucleoside RT inhibitor nevirapine. The drug was administered for 2-3 weeks, in agreement with clinical experience of resistance development during nevirapine monotherapy. This resulted in the selection of mutants with Y181C and K103N changes in RT, which correspond to the HIV-1 mutations in nevirapine-resistant HIV-1 patients. The mutants coexisted at varying levels with wild-type virus and fluctuations in the proportion of mutants could be closely monitored. Low-dose treatment was not more efficient in induction of mutations than a virus-inhibiting dose. Structured therapy interruptions could be performed. The monkey RT-SHIV infection offers an in vivo model to determine effects of therapies on resistance development.


Journal of Virology | 2006

Perforin Expression in the Gastrointestinal Mucosa Is Limited to Acute Simian Immunodeficiency Virus Infection

Máire F. Quigley; Kristina Abel; Bartek Zuber; Christopher J. Miller; Johan K. Sandberg; Barbara L. Shacklett

ABSTRACT Perforin-mediated cytotoxicity is a major effector function of virus-specific CD8 T cells. We have investigated the expression of perforin in the gut, an important site of simian immunodeficiency virus (SIV) pathogenesis, during experimental SIV infection of rhesus macaques. We observed significant increases in perforin protein and mRNA expression levels in the colons of SIV-infected macaques as early as 21 days after infection. However, during chronic infection, despite ongoing viral replication, perforin expression returned to levels similar to those detected in SIV-naïve animals. These findings demonstrate the presence of a robust perforin-positive response in gastrointestinal CD8 T cells during acute, but not chronic, SIV infection.


FEBS Letters | 2004

Locked nucleic acid containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication.

Joacim Elmén; Hong Yan Zhang; Bartek Zuber; Karl Ljungberg; Britta Wahren; Claes Wahlestedt; Zicai Liang

We have evaluated antisense design and efficacy of locked nucleic acid (LNA) and DNA oligonucleotide (ON) mix‐mers targeting the conserved HIV‐1 dimerization initiation site (DIS). LNA is a high affinity nucleotide analog, nuclease resistant and elicits minimal toxicity. We show that inclusion of LNA bases in antisense ONs augments the interference of HIV‐1 genome dimerization. We also demonstrate the concomitant RNase H activation by six consecutive DNA bases in an LNA/DNA mix‐mer. We show ON uptake via receptor‐mediated transfection of a human T‐cell line in which the mix‐mers subsequently inhibit replication of a clinical HIV‐1 isolate. Thus, the technique of LNA/DNA mix‐mer antisense ONs targeting the conserved HIV‐1 DIS region may provide a strategy to prevent HIV‐1 assembly in the clinic.


AIDS Research and Human Retroviruses | 2004

Mutations Conferring Drug Resistance Affect Eukaryotic Expression of HIV Type 1 Reverse Transcriptase

Maria G. Isaguliants; Sergey Belikov; Elizaveta Starodubova; Rinat Gizatullin; Erik Rollman; Bartek Zuber; Anne Kjerrström Zuber; Olga I. Andreeva Grishchenko; Ann-Sofie Rytting; Clas Källander; Britta Wahren

Mutations in reverse transcriptase (RT) confer high levels of HIV resistance to drugs. However, while conferring drug resistance, they can lower viral replication capacity (fitness). The molecular mechanisms behind remain largely unknown. The aim of the study was to characterize the effect of drug-resistance mutations on HIV RT expression. Genes encoding AZT-resistant RTs with single or combined mutations D67N, K70R, T215F, and K219Q, and RTs derived from drug-resistant HIV-1 strains were designed and expressed in a variety of eukaryotic cells. Expression in transiently transfected cells was assessed by Western blotting and immunofluorescent staining with RT-specific antibodies. To compare the levels of expression, mutated RT genes were microinjected into the nucleus of the oocytes of Xenopus laevis. Expression of RT was quantified by sandwich ELISA. Relative stability of RTs was assessed by pulse-chase experiments. Xenopus oocytes microinjected with the genes expressed 2-50 pg of RT mutants per cell. The level of RT expression decreased with accumulation of drug-resistance mutations. Pulse-chase experiments demonstrated that poor expression of DR-RTs was due to proteolytic instability. Instability could be attributed to additional cleavage sites predicted to appear in the vicinity of resistance mutations. Accumulation of drug-resistance mutations appears to affect the level of eukaryotic expression of HIV-1 RT by inducing proteolytic instability. Low RT levels might be one of the determinants of impaired replication fitness of drug-resistant HIV-1 strains.

Collaboration


Dive into the Bartek Zuber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Rollman

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge