Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bartley G. Hoebel is active.

Publication


Featured researches published by Bartley G. Hoebel.


Life Sciences | 1988

Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis

Luis Hernandez; Bartley G. Hoebel

Dopamine was measured by microdialysis in the nucleus accumbens of freely moving rats while they experienced rewarding food, brain stimulation and drugs. Extracellular dopamine increased 37% when the animals pressed a lever for food reward. Electrical stimulation of a lateral hypothalamic feeding-reward (self-stimulation) site caused a similar increase in dopamine, with or without food. At the site in the nucleus accumbens where rats will administer amphetamine to themselves, injections of amphetamine or cocaine increased extracellular dopamine five-fold. Thus amphetamine and cocaine increase dopamine in a behavior reinforcement system which is normally activated by eating. Conversely, the release of dopamine by eating could be a factor in addiction to food.


Psychopharmacology | 1983

Self-injection of amphetamine directly into the brain

Bartley G. Hoebel; Anthony P. Monaco; Luis Hernandez; Edward F. Aulisi; B. Glenn Stanley; László Lénárd

Rats learned to self-administer d-amphetamine (10 μg/μl) through a cannula implanted in the nucleus accumbens. They responded more frequently for 65±15 nl of amphetamine than for equal amounts of saline. When presented with two levers (one amphetamine, one blank) they responded more on the correct lever for amphetamine. They would also switch levers, when necessary, to maintain access to the drug. When half the usual drug intake was given automatically, animals reduced their response rate by half, thus self-regulating the total amount of amphetamine they received. In tests for leakage into the ventricles, eight rats that self-injected with an accumbens cannula showed response extinction when switched to a ventricular cannula. We conclude that amphetamine self-injected into the accumbens is a positive reinforcer. This localization of ‘amphetamine reward’ suggests that the nucleus accumbens contains a synaptic mechanism underlying amphetamine abuse and, perhaps, also natural reinforcement of behavior.


Neuroscience | 2005

Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell

Pedro Rada; Nicole M. Avena; Bartley G. Hoebel

Most drugs of abuse increase dopamine (DA) in the nucleus accumbens (NAc), and do so every time as a pharmacological response. Palatable food also releases accumbens-shell DA, but in naïve rats the effect can wane during a long meal and disappears with repetition. Under select dietary circumstances, sugar can have effects similar to a drug of abuse. Rats show signs of DA sensitization and opioid dependence when given intermittent access to sucrose, such as alterations in DA and mu-opioid receptors, cross-sensitization with amphetamine and alcohol, and behavioral and neurochemical signs of naloxone-precipitated withdrawal. The present experiment asks whether sucrose-dependent rats release DA each time they binge. We also predict that acetylcholine (ACh), which rises as the end of a meal, will be delayed in rats with intermittent access to sucrose. To create dependency, the experimental group (Daily Intermittent Sucrose) was maintained on a diet of 12-h food deprivation that extended 4 h into the dark, followed by 12-h access to a 10% sucrose solution and chow, daily, for 21 days. As the main result, these rats gradually increased their sucrose intake from 37 to 112 ml per day (from 13 to 20 ml in the first hour of access), and repeatedly increased extracellular DA to 130% of baseline as measured in the NAc shell by microdialysis during the first hour of sucrose access on day 1, day 2 and day 21. Three control groups failed to show a significant increase in extracellular DA on day 21: Sucrose only for 1 h on days 1 and 21 (Sucrose Twice), ad libitum access to sucrose and chow (Daily Ad libitum Sucrose), and intermittent chow instead of sucrose (Daily Intermittent Chow). Acetylcholine measured at the same time as DA, increased significantly toward the end and after each test meal in all groups. In the Daily Intermittent Sucrose group, the highest ACh levels (133%) occurred during the first sample after the sucrose meal ended. In summary, sucrose-dependent animals have a delayed ACh satiation response, drink more sucrose, and release more DA than sucrose- or binge-experienced, but non-dependent animals. These results suggest another neurochemical similarity between intermittent bingeing on sucrose and drugs of abuse: both can repeatedly increase extracellular DA in the NAc shell.


Science | 1973

Overeating and obesity from damage to a noradrenergic system in the brain.

Ahlskog Je; Bartley G. Hoebel

A discrete, ascending fiber system that supplies the hypothalamus with most of its noradrenergic terminals was destroyed at midbrain level, both electrolytically and with local injections of 6-hydroxydopamine, a destructive agent specific for catecholaminergic neurons. The result was hyperphagia leading to obesity. Fluorescence histochemical analysis showed that loss of noradrenergic terminals in ventral bundle termination areas such as the hypothalamus was necessary for hyperphagia. Damage to dorsal bundle or dopaminergic projections was not. Prior treatment with desmethylimipramine to selectively block uptake of 6-hydroxydopamine into noradrenergic neurons prevented both hyperphagia and loss of norepinephrine fluorescence. The lesions that produced hyperphagia also reduced the potency of d-amphetamine as an appetite suppressant. It is concluded that this noradrenergic bundle normally mediates suppression of feeding, thereby influences body weight, and serves as a substrate for d-amphetamine-induced loss of appetite.


Physiology & Behavior | 1988

Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens.

Luis Hernandez; Bartley G. Hoebel

The hypothesis that the dopaminergic system plays a role in feeding behavior was tested in three experiments. First, microdialysis was performed in the nucleus accumbens (NAC) at 20 min intervals during free feeding in rats at 80% of normal body weight. Extracellular concentration of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) increased significantly during eating indicating an increase in DA turnover. Second, microdialysis samples were collected from the NAC during bar pressing with a) a signal light on and food available, b) the light on but no food available, c) neither light nor food. Only when food was available did extracellular DA, DOPAC and HVA increase significantly. This increase in DA turnover occurred in the accumbens but not in the ventral striatum. Third, electrical stimulation of the perifornical lateral hypothalamus (LH) that was capable of inducing feeding increased extracellular DA, DOPAC and HVA in the NAC. This occurred whether the animal had food to eat or not. The effect of LH stimulation on DA turnover resembled the effects of free feeding and operant feeding in Experiments 1 and 2. Perifornical LH stimulation did not increase dopamine turnover in the ventral striatum. The results show that perifornical LH stimulation activates the mesolimbic dopamine system and that dopamine release in the accumbens is involved in feeding. The increase in dopamine turnover outlasted the consummatory act. This suggests that accumbens dopamine may be related to sensory input, feeding reflexes, food reward or memory processes and not just to the consummatory act itself.


Life Sciences | 1986

A small, removable microdialysis probe

Luis Hernandez; B. Glenn Stanley; Bartley G. Hoebel

A miniaturized, concentric, microdialysis probe is described. It is constructed from 36 gauge stainless steel tubing inside of 26 gauge tubing, with a cellulose hollow fiber tip 0.2 mm in diameter and 2 mm long. It has a 6000 molecular weight cut off that excludes enzymes but collects monoamines, their metabolites, and other small neurochemicals. In vitro tests show relative recovery rates of 5-10%. Absolute recovery measured in picograms was independent of the perfusate flow rate inside the probe. Tests in awake rats with probes in the nucleus accumbens showed stable amounts of catecholamines and metabolites collected during repeated 20 min samples. After ip amphetamine, release of dopamine in the accumbens increased from 20 to 40 pg per sample while DOPAC and HVA decreased from about 1500 to 500 pg. Tests of multiple site sampling succeeded in obtaining norepinephrine and dopamine plus three metabolites (DOPAC, HVA and 5HIAA) from four probes simultaneously in four different brain sites in each rat. Five day continuous samples or monthly intermittent samples can be obtained with this microdialysis probe.


Neuroscience | 2003

A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine

Nicole M. Avena; Bartley G. Hoebel

Previous research in this laboratory has shown that a diet of intermittent excessive sugar consumption produces a state with neurochemical and behavioral similarities to drug dependency. The present study examined whether female rats on various regimens of sugar access would show behavioral cross-sensitization to a low dose of amphetamine. After a 30-min baseline measure of locomotor activity (day 0), animals were maintained on a cyclic diet of 12-h deprivation followed by 12-h access to 10% sucrose solution and chow pellets (12 h access starting 4 h after onset of the dark period) for 21 days. Locomotor activity was measured again for 30 min at the beginning of days 1 and 21 of sugar access. Beginning on day 22, all rats were maintained on ad libitum chow. Nine days later locomotor activity was measured in response to a single low dose of amphetamine (0.5 mg/kg). The animals that had experienced cyclic sucrose and chow were hyperactive in response to amphetamine compared with four control groups (ad libitum 10% sucrose and chow followed by amphetamine injection, cyclic chow followed by amphetamine injection, ad libitum chow with amphetamine, or cyclic 10% sucrose and chow with a saline injection). These results suggest that a diet comprised of alternating deprivation and access to a sugar solution and chow produces bingeing on sugar that leads to a long lasting state of increased sensitivity to amphetamine, possibly due to a lasting alteration in the dopamine system.


Annals of the New York Academy of Sciences | 1989

Microdialysis Studies of Brain Norepinephrine, Serotonin, and Dopamine Release During Ingestive Behavior Theoretical and Clinical Implications

Bartley G. Hoebel; Luis Hernandez; David H. Schwartz; Gregory P. Mark; George A. Hunter

This minireview deals with the possible roles of monoamines in feeding and feeding disorders. The introduction sketches the results of earlier studies with local drug injections and selective neurotoxins which provided pharmacological evidence that monoamines can influence food intake and body weight. A table summarizing this evidence is used to list monoamine changes that could underlie anorexia or hyperphagia. It is apparent that abnormalities in the monoamines, along with their cotransmitters, could cause many forms of feeding disorder. It is proposed as a working hypothesis that several varieties of hyperphagia leading to obesity have a common element. This common factor is a change in excitability of a lateral hypothalamic reinforcement system as manifested in self-stimulation at a stimulation-bound feeding site. Understanding this feeding reward-aversion system helps us understand hyperphagia and anorexia. The neurochemistry of reward and aversion involves the monoamines. This paper focuses on dopamine and serotonin. The data support the hypothesis that dopamine systems projecting to the nucleus accumbens and other forebrain areas from the mid-brain ventral tegmental area (VTA) are important for approach and positive reinforcement in ingestive behavior and self-stimulation. Serotonin is hypothesized to facilitate satiety and inhibition of feeding reward in the hypothalamus. The next section abstracts our recent experiments that measured pharmacological and physiological release of the monoamines in the hypothalamus and nucleus accumbens during ingestive behavior and self-stimulation. In vivo microdialysis in freely moving rats suggested the following: (1) Norepinephrine was released in the paraventricular nucleus during the active, feeding period of the circadian cycle. (2) The serotonin metabolite 5-HIAA also increased in the PVN at the same time if there was food to eat. (3) Amphetamine infused into the lateral hypothalamus (LH) by reverse dialysis increased synaptic dopamine, norepinephrine, and serotonin. (4) The anorectic drug d-fenfluramine increased synaptic serotonin in the LH and also increased the dopamine metabolite DOPAC, suggesting that serotonin and dopamine in the LH might contribute to fenfluramine-induced satiety. Local d-fenfluramine injection into the LH or local infusion by reverse dialysis again increased serotonin and decreased 5-HIAA and interfered with local dopamine metabolism as reflected in decreased DOPAC and HVA. (5) Tryptophan, a serotonin precursor, given systemically at an anorectic dose, increased extracellular serotonin in the LH, but this effect was only detectable in food-deprived rats. This was seemingly pH independent (between 5.8 and 8). The passage other cations through CFo is strictly suppressed (even at pH 8 and with 300 mM NaCl in the medium).(ABSTRACT TRUNCATED AT 400 WORDS)


The Journal of Neuroscience | 1995

Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake

Emmanuel N. Pothos; I Creese; Bartley G. Hoebel

Weight loss is known to alter food intake and drug self-administration, but the neural basis of this is unknown. Therefore, we studied effects of weight loss on neurochemistry of a brain mechanism involved in behavior reinforcement. In rats reduced 20-30% below normal weight, basal extracellular dopamine (DA) in the nucleus accumbens (NAC) decreased up to 50% (p < 0.01), as measured by in vivo microdialysis. No such change was observed in dorsal striatum (STR) or medial prefrontal cortex. In underweight rats, systemic amphetamine (1.5 mg/kg i.p.) transiently restored extracellular DA, but only to basal normal levels. Morphine (20 mg/kg i.p.) or a meal also increased DA, but the percent increase was significantly smaller in underweight than normal weight animals. Amphetamine infused locally by reverse dialysis in the NAC increased extracellular DA more in underweight animals than controls, suggesting that DA had accumulated in the presynaptic terminals. This was confirmed by finding significantly more DA in homogenized NAC micropunches of underweight rats. Receptor counts in micropunches and quantitative receptor autoradiography showed 3H- SCH23390 and 3H-spiperone D1- and D2-type binding in the NAC, STR, frontal cortex and hypothalamus did not change significantly. Locomotor activity was depressed suggesting that low DA release in the NAC may be related to energy conservation during weight loss. Low extracellular DA may also underlie the increase in food and drug intake typically observed in underweight animals and humans when they attempt to restore extracellular DA levels by natural or artificial means.


Brain Research | 1989

Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis

Jean-Christophe Mifsud; Luis Hernandez; Bartley G. Hoebel

It has been postulated that addiction to nicotine is mediated by dopamine release in the mesolimbic system. It is possible that nicotine might act directly on the dopamine terminals to release dopamine. This hypothesis was tested by infusing nicotine through a microdialysis probe into the nucleus accumbens of freely moving rats. Dopamine, dihydroxyphenylacetic acid, and homovanillic acid from the extracellular space were collected by microdialysis and measured by high pressure liquid chromatography. Nicotine increased extracellular dopamine in a dose-related manner. Systemic injection of the nicotine antagonist mecamylamine blocked the dopamine increase induced by local nicotine. These results suggest that nicotine releases dopamine by a local action in the nucleus accumbens terminal area of the mesolimbic system. Presynaptic induction of dopamine release might play a role in nicotine addiction.

Collaboration


Dive into the Bartley G. Hoebel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge