Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bartosz Kiersztyn is active.

Publication


Featured researches published by Bartosz Kiersztyn.


Aquatic Biosystems | 2013

Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring

Krystyna Kalinowska; Adam Guśpiel; Bartosz Kiersztyn; Ryszard J. Chróst

BackgroundThe bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant.ResultsThe abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method.ConclusionsIn the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity. None of the single analyzed factors controlled bacterial abundance in the bottom waters. The results of this study suggest that both control mechanisms, bottom-up and top-down, simultaneously regulated bacterial community and their activity in the profundal zone of the studied lakes during spring. In both lake water layers, food availability (algae, nanoflagellates) was probably the major factor determining ciliate abundance and their composition. In the bottom waters, both groups of protists appeared to be also influenced by oxygen, temperature, and total phosphorus.


Fungal Biology | 2016

Preliminary studies on the evolution of carbon assimilation abilities within Mucorales

Julia Pawłowska; Tamara Aleksandrzak-Piekarczyk; Agnieszka Banach; Bartosz Kiersztyn; Anna Muszewska; Lidia Serewa; Katarzyna Szatraj; Marta Wrzosek

Representatives of Mucorales belong to one of the oldest lineages of terrestrial fungi. Although carbon is of fundamental importance for fungal growth and functioning, relatively little is known about enzymatic capacities of Mucorales. The evolutionary history and the variability of the capacity to metabolize different carbon sources among representatives of the order Mucorales was studied using Phenotypic Microarray Plates. The ability of 26 strains belonging to 23 nonpathogenic species of Mucorales to use 95 different carbon sources was tested. Intraspecies variability of carbon assimilation profiles was lower than interspecies variation for some selected strains. Although similarities between the phylogenetic tree and the dendrogram created from carbon source utilization data were observed, the ability of the various strains to use the analyzed substrates did not show a clear correlation with the evolutionary history of the group. Instead, carbon assimilation profiles are probably shaped by environmental conditions.


Polish Journal of Ecology | 2016

The Role of Planktonic Organisms in Urea Metabolism in Lakes of Temperate Zone - Case Study

Waldemar Siuda; Ryszard J. Chróst; Krystyna Kalinowska; Jolanta Ejsmont-Karabin; Bartosz Kiersztyn

ABSTRACT Although urea is the simplest N-containing organic compound ubiquitous in all aquatic environments, its role in N-nutrition of planktonic biota and relevance for eutrophication of freshwater ecosystems is still insufficiently defined and often bypassed. The dynamics of production of autochthonous urea as well as maximal potential net ureolytic activity (net URA Vmax) of phyto- and bacterioplakton were studied in mesocosm experiment and verified during the field studies conducted in the Great Mazurian Lake system (GMLS). Analysis of the obtained results revealed that the proteins were the main autochthonous urea precursors. Urea concentration in the studied mesocosms and in GMLS surface waters was positively correlated with flagellate, ciliate and crustacean biomass and, less evidently, with bacterial biomass (BB). In surface waters of GMLS net URA Vmax, similarly as urea concentrations, increased with their trophic status. Analysis of correlation of potential ureolytic activity with chlorophylla, (Chla) BB and L-leucine aminopeptidase activity (AMP) in lakes of different trophic status suggests that although both groups of planktonic microorganisms participated in urea decomposition processes, in eutrophic ones bacterial decomposition of urea is more evident. In highly eutrophic lakes excess of phosphorus induced higher nitrogen requirement resulting in the increase in protein decomposition rate. Intensified protein degradation resulted faster urea production, which finally induced higher ureolytic activity of planktonic microorganisms. In profundal waters of GMLS potential ureolytic activity was distinctly lower than in surface waters. This was caused by low temperature of hypolymnetic waters, inhibitory effect of hydrogen sulphide and lack of phytoplankton, which is known as a primary urea consumer.


Polish Journal of Ecology | 2015

Urea in lake ecosystem: the origin, concentration and distribution in relation to trophic state of The Great Mazurian Lakes (Poland)

Waldemar Siuda; Bartosz Kiersztyn

ABSTRACT The distribution, concentrations and origin of urea were studied in surface and profundal waters of meso-eutrophic and highly eutrophic parts of The Great Mazurian Lake System (GMLS) during spring — autumn period. Urea concentrations varied from 0.25 µM in surface layer to 3.36 µM in profundal zone of studied lakes and were in the range of concentrations noted in other non-polluted freshwater habitats. In the photic zone of lakes of GMLS Urea N made up to 10 % the total DON pool and often exceeded 2-3 times of NH4+-N concentrations. Pattern of changes in urea concentrations observed during three-years study excludes external urea input and suggests supplementation of lake waters with this compounds by phytoplankton decomposition processes. Generally, urea concentrations were negatively correlated with the trophic state index calculated from “algal” as well as from “bacterial” determinants. However, more detailed analysis showed that the relationships between production and assimilation of urea by various plankton components as well as the ecological role of this compound in meso- and eutrophic lakes could be different.


Journal of Microbiological Methods | 2018

Quantitative description of respiration processes in meso-eutrophic and eutrophic freshwater environments

Bartosz Kiersztyn; Elsi S. Kauppinen; Tomasz Kaliński; Ryszard J. Chróst; Waldemar Siuda

We propose a modification of measurement methodology allowing the overall respiration rate (VResp) close to the in situ conditions; size of the labile, respirable organic matter pool (OMResp); and its turnover time (Tt) to be calculated. In addition to the respiration of dissolved substrates by free-living bacteria, the respiration of attached bacteria and other planktonic organisms is also taken into account. In case study we evaluated the modified, quantitative description of respiration processes in surface waters of lakes of different trophic status: mezzo-eutrophic and eutrophic. In both types of studied environments, VResp oscillated between 1.0 μmol C l-1 h-1 and 3.0 μmol C l-1 h-1, and the size of the OMResp pool varied from 39.3 μM C to 828.7 μM C. Despite of higher OMResp concentrations in eutrophic lakes, we found a lower susceptibility of OM to respiration processes in eutrophic than in meso-eutrophic lakes but similar VResp in both types of lakes. We conclude that the proposed method allows a fast quantitative description of labile organic matter utilization by aerobic aquatic microorganisms.


Polish Journal of Microbiology | 2017

Microbial Biomass and Enzymatic Activity of the Surface Microlayer and Subsurface Water in Two Dystrophic Lakes

Iwona Kostrzewska-Szlakowska; Bartosz Kiersztyn

Nutrient and organic matter concentration, microbial biomass and activities were studied at the surface microlayers (SML) and subsurface waters (SSW) in two small forest lakes of different water colour. The SML in polyhumic lake is more enriched with dissolved inorganic nitrogen (0.141 mg l-1) than that of oligohumic lake (0.124 mg l-1), the former also contains higher levels of total nitrogen (2.66 mg l-1). Higher activities of lipase (Vmax 2290 nmol l-1 h-1 in oligo- and 6098 in polyhumic) and glucosidase (Vmax 41 nmol l-1 h-1 in oligo- and 49 in polyhumic) were in the SMLs in both lakes. Phosphatase activity was higher in the oligohumic SML than in SSW (Vmax 632 vs. 339 nmol l-1 h-1) while in polyhumic lake was higher in SSW (Vmax 2258 nmol l-1 h-1 vs. 1908 nmol l-1 h-1). Aminopeptidase activity in the SSW in both lakes was higher than in SMLs (Vmax 2117 in oligo- and 1213 nmol l-1 h-1 in polyhumic). It seems that solar radiation does inhibit neuston microbial community as a whole because secondary production and the share of active bacteria in total bacteria number were higher in SSW. However, in the oligohumic lake the abundance of bacteria in the SML was always higher than in the SSW (4.07 vs. 2.69 × 106 cells ml-1) while in the polyhumic lake was roughly equal (4.48 vs. 4.33 × 106 cells ml-1) in both layers. Results may also suggest that surface communities are not supplemented by immigration from bulk communities. The SML of humic lakes may act as important sinks for allochthonous nutrient resources and may then generate considerable energy pools for microbial food webs.


Polish Journal of Microbiology | 2017

Coomassie Blue G250 for Visualization of Active Bacteria from Lake Environment and Culture

Bartosz Kiersztyn; Waldemar Siuda; Ryszard J. Chróst

Bacteria play a fundamental role in the cycling of nutrients in aquatic environments. A precise distinction between active and inactive bacteria is crucial for the description of this process. We have evaluated the usefulness of Coomassie Blue G250 for fluorescent staining of protein containing potentially highly active bacteria. We found that the G250 solution has excitation and emission properties appropriate for direct epifluorescence microscopy observations. It enables fast and effective fluorescent visualization of living, protein-rich bacteria, both in freshwater environment and culture. Our results revealed that the number of G250-stained bacteria from eutrophic lake was positively correlated with other standard bacterial activity markers, like number of bacteria containing 16S rRNA, bacterial secondary production or maximal potential leucine-aminopeptidase activity. In case of the E. coli culture, the percentage of bacteria visualized with G250 was similar to that of bacteria which accumulated tetracycline. Compared to other common methods utilizing fluorogenic substances for bacteria staining, the approach we evaluated is inexpensive and less hazardous (for example mutagenic) to the environment and researchers. It can be regarded as an additional or alternative method for protein rich, active bacteria staining.


Polish Journal of Ecology | 2017

The Relationship between Primary Production and Respiration in the Photic Zone of the Great Mazurian Lakes (GMLS), in Relation to Trophic Conditions, Plankton Composition and Other Ecological Factors

Waldemar Siuda; Elsi S. Kauppinen; Tomasz Kaliński; Ryszard J. Chróst; Bartosz Kiersztyn

ABSTRACT The relation of primary production to respiration and dependence of both processes on various environmental factors were investigated in the surface waters of lakes of The Great Mazurian Lake System (GMLS) during summer seasons 2009–2011. Primary production and extracellular release was determined by 14C method, respiration (dark oxygen consumption) - by Winklers method. Collected results allow to conclude that: (i) in all studied lakes primary production was primarily cyanobacterial, although in mesotrophic ones participation of eukaryotic phytoplankton in light CO2 fixation was more pronounced; (ii) in mesotrophic part of GMLS primary production was limited alternately by N and P availability and less dependent on N and P regeneration processes, whereas in southern, eutrophic lakes it was primarily fueled by regeneration of biogenic substances from organic compounds and strongly limited by N resources; (iii) although in photic zone of whole GMLS respiration was dominated by heterotrophic bacteria, in its mesotrophic part also participation of other plankton components in respiration processes was significant and, (iv) that in eutrophic lakes planktonic respiration was more dependent on low molecular weight products liberated enzymatically from organic substrates than on organic compounds released by primary producers. The mean production to respiration ratio, which varied from 2.11 to 2.60 in northern, and from 2.05 to 3.67 in southern lakes suggested that during period of investigations photic zones of lakes of both parts of GMLS were net autotrophic systems.


European Journal of Obstetrics & Gynecology and Reproductive Biology | 2017

Total proteolytic activity and concentration of alpha-1 antitrypsin in meconium for assessment of the protease/antiprotease balance

Ewa Skarżyńska; Bartosz Kiersztyn; Paulina Wilczyńska; Artur J. Jakimiuk; Barbara Lisowska-Myjak

BACKGROUND During intrauterine life, various proteolytic enzymes and their main inhibitor, alpha-1 antitrypsin, accumulate naturally in meconium. A protease/antiprotease balance is required to maintain the biological stability of the environment in which the fetus develops. METHODS The pool of active proteases was determined using the EnzChek Protease Assay Kit. The concentration of alpha-1 antitrypsin in meconium was measured by enzyme-linked immunosorbent assay. Serial portions of meconium (n=80) were collected from healthy full-term neonates (n=19). RESULTS Mean concentrations of active proteases and alpha-1 antitrypsin were 1.55 [standard deviation (SD) 1.3]mgg-1 (range 0.15-6.17) and 3.72 (SD 1.78)mgg-1 (range 0.76-8.55), respectively, with significant correlation (Rs=0.32, p=0.004). A significant increase in the concentration of active proteases was found between the first and last meconium portions (p<0.05). The proteases in the last meconium portions had a higher reaction velocity and affinity for the substrate than the proteases in the first meconium portions. The active protease:alpha-1 antitrypsin ratio was <0.5 in all first meconium portions, but was higher in the last meconium portions. CONCLUSIONS Strong correlation between the concentrations of active proteases and alpha-1 antitrypsin in meconium may indicate their mutual interaction in the intrauterine environment. Alpha-1 antitrypsin maintains the protease/antiprotease balance during fetal development.


FEMS Microbiology Ecology | 2012

Persistence of bacterial proteolytic enzymes in lake ecosystems

Bartosz Kiersztyn; Waldemar Siuda; Ryszard J. Chróst

Collaboration


Dive into the Bartosz Kiersztyn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Muszewska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge