Barun Kumar Ghosh
Birla Institute of Technology and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barun Kumar Ghosh.
RSC Advances | 2014
Subhenjit Hazra; Barun Kumar Ghosh; Hrishikesh Joshi; Manoj Kumar Patra; Raj Kumar Jani; Sampat Raj Vadera; Narendra Nath Ghosh
The development of a simple yet novel aqueous solution based ‘one-pot’ method has been reported for the preparation of nanocomposites composed of soft ferrite (Mn0.2Ni0.4Zn0.4Fe2O4) and hard ferrite (BaFe12O19) phases. A physical mixing method has also been employed to prepare nanocomposites having the same compositions. The effects of synthetic methodologies on the microstructures of the nanocomposites as well as their magnetic and microwave absorption properties have been evaluated. The crystal structures and microstructures of these composites have been investigated using X-ray diffraction, transmission electron microscopy and scanning electron microscopy. In the nanocomposites prepared by both methods, the presence of nanocrystalline Mn0.2Ni0.4Zn0.4Fe2O4 and BaFe12O19 phases were detected. However, nanocomposites prepared by the one-pot method possessed better homogeneous distribution of hard and soft ferrite phases than the nanocomposites prepared by the physical mixing method. Very good spring exchange coupling interaction between the hard and soft ferrite phases was observed for the nanocomposites prepared by the one-pot method and these composites exhibited magnetically single phase behaviour. The spring exchange coupling interaction enhanced the magnetic properties (high saturation magnetization and coercivity) and microwave absorption properties of the nanocomposites prepared by the one-pot method, in comparison with the nanocomposites prepared by the physical mixing method as well as pure Mn0.2Ni0.4Zn0.4Fe2O4 and BaFe12O19 nanoparticles. The minimum reflection loss of the composites was found to be ∼−25 dB (i.e. >99% absorption) at 8.2 GHz with an absorber thickness of 3.5 mm.
RSC Advances | 2016
Debabrata Moitra; Madhurya Chandel; Barun Kumar Ghosh; Raj Kumar Jani; Manoj Kumar Patra; Sampat Raj Vadera; Narendra Nath Ghosh
Here, an ‘in situ’ co-precipitation reaction method has been reported for the preparation of CoFe2O4–RGO (CF–RGO) nanocomposites. To the best of our knowledge, this is the first time a simple synthetic method is reported for the preparation of CoFe2O4–RGO nanocomposites where a hydrothermal technique was not used. The novelty of this technique lies in its simplicity, cost-effectiveness, and the capability of large scale production of CoFe2O4–RGO nanocomposites. The synthesized CoFe2O4–RGO nanocomposites possess excellent microwave absorbing properties as well as high photocatalytic activity towards the degradation of various dyes under visible light irradiation. 85CF–15RGO (85 wt% CF and 15 wt% RGO) showed excellent microwave absorption properties with a Reflection Loss (RL) of −31.31 dB (∼99.94% absorption) at 9.05 GHz with an 8.2–10.92 GHz effective band width range. To the best of our knowledge 85CF–15RGO nanocomposite exhibited comparable and even superior microwave absorption properties in the X-band region than most of the ferrite based composites. 75CF–25RGO (75 wt% CF and 25 wt% RGO) acted as a very good magnetically separable photocatalyst for the degradation of various synthetic dyes (such as methyl orange, methylene blue, rhodamine B and a mixture of these dyes) under visible light irradiation emitted from a 100 W reading lamp. Moreover, CoFe2O4–RGO catalyst also showed easy magnetic separation with high reusability. The photocatalytic activity of 75CF–25RGO was found to be comparable and in some cases better than the various reported RGO–ferrite composites. The simple method of preparation and multifunctional character make CF–RGO nanocomposites attractive materials for application in the area of photocatalysis as well as microwave absorption.
RSC Advances | 2016
Debabrata Moitra; Barun Kumar Ghosh; Madhurya Chandel; Raj Kumar Jani; Manoj Kumar Patra; Sampat Raj Vadera; Narendra Nath Ghosh
A Ni0.8Zn0.2Fe2O4 reduced graphene oxide nanocomposite has been synthesized by a simple ‘in situ co-precipitation’ technique. This composite exhibited an ability to act as an excellent magnetically separable catalyst towards the degradation of various dyes as well as a toxic herbicide (trifluralin). It also demonstrated very good microwave absorption properties.
RSC Advances | 2015
Debabrata Moitra; Subhenjit Hazra; Barun Kumar Ghosh; Raj Kumar Jani; Manoj Kumar Patra; Sampat Raj Vadera; Narendra Nath Ghosh
CoFe2O4 nanoparticles, synthesized via a co-precipitation method at 120 °C, exhibited excellent microwave absorption properties, with minimum reflection loss of −55 dB (∼99.99%) at 9.25 GHz. To the best of our knowledge, these synthesized CoFe2O4 nanoparticles show the highest minimum reflection loss in comparison with the reported CoFe2O4 based materials.
Catalysis Letters | 2017
Barun Kumar Ghosh; Debabrata Moitra; Madhurya Chandel; Manoj Kumar Patra; Sampat Raj Vadera; Narendra Nath Ghosh
Here, synthesis and catalytic activity of a novel nanocatalyst (CuO@mTiO2@CF), consisting of CuO nanoparticles, mesoporous titanium oxide and Cobalt ferrite have been reported for the first time. The catalyst was synthesized using a simple aqueous solution based chemical methodology. Synthesized CuO@mTiO2@CF showed excellent catalytic activity towards various organic reactions such as (i) Epoxidation of styrene, (ii) Click reaction, (iii) Biginelli reaction, (iv) Reduction of 4-Nitrophenol and trifluralin in presence of excess NaBH4. Moreover, this novel nanocatalyst offered easy magnetic separation after the catalysis reaction and excellent reusability. Easy synthesis methodology, versatility, good reusability and easy separation make the nanocatalyst attractive in the field of heterogeneous catalysis.Graphical Abstract
RSC Advances | 2015
Bhanudas Naik; Subhenjit Hazra; Dayananda Desagani; Barun Kumar Ghosh; Manoj Kumar Patra; Sampat Raj Vadera; Narendra Nath Ghosh
This study deals with the exploration of CoFe2O4 supported Ag nanoparticles as a catalyst for the decolorization of various dyes (such as 4-nitrophenol, Congo red, rhodamine B) and dye mixtures by employing a reduction reaction with excess NaBH4 in an aqueous medium. Nanocatalysts with 10 wt% Ag loading (10Ag@CoFe2O4) exhibited very high catalytic activity and dye solutions were found to be decolorized within 4 to 6 minutes. A simple method for the preparation of a catalyst (10Ag@CoFe2O4) was reported, which exhibited very high catalytic efficiency towards the decolorization of dyes with different chemical structures as well as demonstrating its magnetic properties for easy separation from reaction mixtures and its reusability.
RSC Advances | 2016
Debabrata Moitra; Barun Kumar Ghosh; Madhurya Chandel; Narendra Nath Ghosh
Herein, we report for the first time synthesis of a BiFeO3 nanowire-reduced graphene oxide nanocatalyst (BFO–RGO) using a hydrothermal method. The BFO–RGO nanocatalyst exhibited excellent catalytic activity towards Biginelli reaction, Click reaction, styrene epoxidation, 4-NP reduction and a herbicide, (trifluralin) reduction. The novelty of this catalyst lies in its high catalytic efficiency towards many organic reactions, easy separation and good reusability.
RSC Advances | 2015
Subhenjit Hazra; Hrishikesh Joshi; Barun Kumar Ghosh; Asif Ahmed; Timothy D. Gibson; Paul A. Millner; Narendra Nath Ghosh
A novel and efficient electrochemical sensor has been developed to quantitatively measure H2O2 concentration by cyclic voltammetry. The sensor was prepared by modifying screen printed gold electrodes by ruthenium nanoparticle (Ru nanoparticle) loaded thiol functionalized mesoporous SBA15 (Ru@SBA15-SH) which was prepared by three simple steps. During measurement H2O2 electrochemically interacted with Ru nanoparticles and was channelled appropriately through the mesoporous structure of SBA15. The developed sensor showed a wide detection range with high sensitivity, durability and reproducibility. Furthermore, a very low limit of detection was reported by the sensor (0.42 μM (∼0.0142 ppm)), which was much lower than the permissible exposure limit.
Journal of Nanoscience and Nanotechnology | 2018
Starlaine Mascarenhas; Ram U Gawas; Barun Kumar Ghosh; Mainak Banerjee; Anasuya Ganguly; Amrita Chatterjee; Narendra Nath Ghosh
Silica (SiO2) is the inevitable form of silicon owing to its high affinity for oxygen, existing as a geogenic element perpetrating multifarious health problems when bioavailable via anthropogenic activities. The hydrated form of silica viz. orthosilicic acid (H4SiO4) excessively displays grave toxicity, attributed to prolonged exposure and incessant H+ ions generating capacity inflicting pulmonary toxicity and renal toxicity silica. The diverse deleterious potency of silica highlights the desirability of selective and sensitive detection of toxic species (mainly orthosilicic acid) bioaccumulation in affected living human cells. In this paper we have reported, the design of water-dispersible turn-on fluorimetric sensing material for the detection of orthosilicic acid in the aqueous phase and in live cells. The sensing material was prepared by adsorbing a suitable rhodamine derivative (i.e., Rhodamine B hydrazide (Rh1)) on water dispersible TiO2 nanoparticles. The function of the sensing system, which is composed of Rh1 and TiO2 (Rh1@TiO2), is accredited to H+ ion (from orthosilicic acid) induced spirolactam ring-opening of the rhodamine derivative generating orange fluorescence and bright pink colouration. The sensing system was efficiently utilized for fluorimetric detection and imaging of orthosilicic acid accumulation in-vitro in human kidney cells (HK cells). To the best of our knowledge, this is the first time this sensing system (Rh1@TiO2) is reported for detection of toxic silica species accumulation in-vitro in human kidney cells. The advantages, such as good water dispersibility, the absence of organic solvents during fluorimetric studies, quick turn-on type signal transduction, low-level imaging, which are offered by the synthesized sensing material (Rh1@TiO2), make it a potential candidate to fabricate medical tool for early identification of silicainduced nephrotoxicity, which can help to reduce the burden and risk of chronic kidney disease development.
Journal of Nanoscience and Nanotechnology | 2018
Madhurya Chandel; Barun Kumar Ghosh; Debabrata Moitra; Manoj Kumar Patra; Sampat Raj Vadera; Narendra Nath Ghosh
Herein, we reports the application of various spinel ferrite nanoparticles, MFe2O4 (M = Co, Ni, Cu, Zn), as efficient catalyst for Biginelli reaction. All ferrite nanoparticles were synthesized using a novel aqueous solution based method. It was observed that, the catalytic activity of the ferrite nanoparticles followed the decreasing order of CoFe2O4 > CuFe2O4 > NiFe2O4 > ZnFe2O4. The most important feature of these ferrite nanocatalysts is that, these nanoparticles can directly be used as catalyst and no surface modification or functionalization is required. These ferrite nanoparticles are easily separable from reaction mixture after reaction by using a magnet externally. Easy synthesis methodology, high catalytic activity, easy magnetic separation and good reusability make these ferrite nanoparticles attractive catalysts for Biginelli reaction.