Bas van Breukelen
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bas van Breukelen.
Molecular & Cellular Proteomics | 2010
Paul J. Boersema; Leong Yan Foong; Vanessa Ding; Simone Lemeer; Bas van Breukelen; Robin Philp; Jos Boekhorst; Berend Snel; Jeroen den Hertog; Albert J. R. Heck
Several mass spectrometry-based assays have emerged for the quantitative profiling of cellular tyrosine phosphorylation. Ideally, these methods should reveal the exact sites of tyrosine phosphorylation, be quantitative, and not be cost-prohibitive. The latter is often an issue as typically several milligrams of (stable isotope-labeled) starting protein material are required to enable the detection of low abundance phosphotyrosine peptides. Here, we adopted and refined a peptidecentric immunoaffinity purification approach for the quantitative analysis of tyrosine phosphorylation by combining it with a cost-effective stable isotope dimethyl labeling method. We were able to identify by mass spectrometry, using just two LC-MS/MS runs, more than 1100 unique non-redundant phosphopeptides in HeLa cells from about 4 mg of starting material without requiring any further affinity enrichment as close to 80% of the identified peptides were tyrosine phosphorylated peptides. Stable isotope dimethyl labeling could be incorporated prior to the immunoaffinity purification, even for the large quantities (mg) of peptide material used, enabling the quantification of differences in tyrosine phosphorylation upon pervanadate treatment or epidermal growth factor stimulation. Analysis of the epidermal growth factor-stimulated HeLa cells, a frequently used model system for tyrosine phosphorylation, resulted in the quantification of 73 regulated unique phosphotyrosine peptides. The quantitative data were found to be exceptionally consistent with the literature, evidencing that such a targeted quantitative phosphoproteomics approach can provide reproducible results. In general, the combination of immunoaffinity purification of tyrosine phosphorylated peptides with large scale stable isotope dimethyl labeling provides a cost-effective approach that can alleviate variation in sample preparation and analysis as samples can be combined early on. Using this approach, a rather complete qualitative and quantitative picture of tyrosine phosphorylation signaling events can be generated.
Molecular & Cellular Proteomics | 2010
Andreas O. Helbig; Sharon Gauci; Reinout Raijmakers; Bas van Breukelen; Monique Slijper; Shabaz Mohammed; Albert J. R. Heck
N-terminal processing of proteins is a process affecting a large part of the eukaryotic proteome. Although N-terminal processing is an essential process, not many large inventories are available, in particular not for human proteins. Here we show that by using dedicated mass spectrometry-based proteomics techniques it is possible to unravel N-terminal processing in a semicomprehensive way. Our multiprotease approach led to the identification of 1391 acetylated human protein N termini in HEK293 cells and revealed that the role of the penultimate position on the cleavage efficiency by the methionine aminopeptidases is essentially conserved from Escherichia coli to human. Sequence analysis and comparisons of amino acid frequencies in the data sets of experimentally derived N-acetylated peptides from Drosophila melanogaster, Saccharomyces cerevisiae, and Halobacterium salinarum showed an exceptionally higher frequency of alanine residues at the penultimate position of human proteins, whereas the penultimate position in S. cerevisiae and H. salinarum is predominantly a serine. Genome-wide comparisons revealed that this effect is not related to protein N-terminal processing but can be traced back to characteristics of the genome.
Amino Acids | 2012
Salvatore Cappadona; Peter R. Baker; Pedro R. Cutillas; Albert J. R. Heck; Bas van Breukelen
Mass spectrometry-based proteomics has evolved as a high-throughput research field over the past decade. Significant advances in instrumentation, and the ability to produce huge volumes of data, have emphasized the need for adequate data analysis tools, which are nowadays often considered the main bottleneck for proteomics development. This review highlights important issues that directly impact the effectiveness of proteomic quantitation and educates software developers and end-users on available computational solutions to correct for the occurrence of these factors. Potential sources of errors specific for stable isotope-based methods or label-free approaches are explicitly outlined. The overall aim focuses on a generic proteomic workflow.
Cell Reports | 2013
Teck Yew Low; Sebastiaan van Heesch; Henk van den Toorn; Piero Giansanti; Alba Cristobal; Pim W. Toonen; Sebastian Schafer; Norbert Hubner; Bas van Breukelen; Shabaz Mohammed; Edwin Cuppen; Albert J. R. Heck; Victor Guryev
Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.
Molecular & Cellular Proteomics | 2012
Richard G. Côté; Johannes Griss; Jose Ángel Dianes; Rui Wang; James C. Wright; Henk van den Toorn; Bas van Breukelen; Albert J. R. Heck; Niels Hulstaert; Lennart Martens; Florian Reisinger; Attila Csordas; David Ovelleiro; Yasset Perez-Rivevol; Harald Barsnes; Henning Hermjakob; Juan Antonio Vizcaíno
The original PRIDE Converter tool greatly simplified the process of submitting mass spectrometry (MS)-based proteomics data to the PRIDE database. However, after much user feedback, it was noted that the tool had some limitations and could not handle several user requirements that were now becoming commonplace. This prompted us to design and implement a whole new suite of tools that would build on the successes of the original PRIDE Converter and allow users to generate submission-ready, well-annotated PRIDE XML files. The PRIDE Converter 2 tool suite allows users to convert search result files into PRIDE XML (the format needed for performing submissions to the PRIDE database), generate mzTab skeleton files that can be used as a basis to submit quantitative and gel-based MS data, and post-process PRIDE XML files by filtering out contaminants and empty spectra, or by merging several PRIDE XML files together. All the tools have both a graphical user interface that provides a dialog-based, user-friendly way to convert and prepare files for submission, as well as a command-line interface that can be used to integrate the tools into existing or novel pipelines, for batch processing and power users. The PRIDE Converter 2 tool suite will thus become a cornerstone in the submission process to PRIDE and, by extension, to the ProteomeXchange consortium of MS-proteomics data repositories.
Journal of Proteome Research | 2008
Simone Lemeer; Martijn W. H. Pinkse; Shabaz Mohammed; Bas van Breukelen; Jeroen den Hertog; Monique Slijper; Albert J. R. Heck
In the developing embryo, as in many other biological processes, complex signaling pathways are under tight control of reversible phosphorylation, guiding cell proliferation, differentiation, and growth. Therefore the large-scale identification of signaling proteins and their post-translational modifications is crucial to understand the proteome biology of the developing zebrafish embryo. Here, we used an automated, robust, and sensitive online TiO 2-based LC-MS/MS setup to enrich for phosphorylated peptides from 1 day old zebrafish embryos. We identified, with high confidence, 1067 endogenous phosphorylation sites in a sample taken from 60 embryos (approximately 180 microg), 321 from 10 embryos, and 47 phosphorylation sites from a single embryo, illustrating the sensitivity of the method. This data set, representing by far the largest for zebrafish, was further exploited by searching for serine/threonine or tyrosine kinase motifs using Scansite. For one-third of the identified phosphopeptides a potential kinase motif could be predicted, where it appeared that Cdk5 kinase, p38MAPK, PKA, and Casein Kinase 2 substrates were the most predominant motifs present, underpinning the importance of these kinases in signaling pathways in embryonic development. The phosphopeptide data set was further interrogated using alignments with phosphopeptides identified in recent large-scale phosphoproteomics screens in human and mouse samples. These alignments revealed conservation of phosphorylation sites in several proteins suggesting preserved function in embryonic development.
Genome Biology | 2008
Jos Boekhorst; Bas van Breukelen; Albert J. R. Heck; Berend Snel
BackgroundReversible phosphorylation of proteins is involved in a wide range of processes, ranging from signaling cascades to regulation of protein complex assembly. Little is known about the structure and evolution of phosphorylation networks. Recent high-throughput phosphoproteomics studies have resulted in the rapid accumulation of phosphopeptide datasets for many model organisms. Here, we exploit these novel data for the comparative analysis of phosphorylation events between different species of eukaryotes.ResultsComparison of phosphoproteomics datasets of six eukaryotes yields an overlap ranging from approximately 700 sites for human and mouse (two large datasets of closely related species) to a single site for fish and yeast (distantly related as well as two of the smallest datasets). Some conserved events appear surprisingly old; those shared by plant and animals suggest conservation over the time scale of a billion years. In spite of the hypothesized incomprehensive nature of phosphoproteomics datasets and differences in experimental procedures, we show that the overlap between phosphoproteomes is greater than expected by chance and indicates increased functional relevance. Despite the dynamic nature of the evolution of phosphorylation, the relative overlap between the different datasets is identical to the phylogeny of the species studied.ConclusionThis analysis provides a framework for the generation of biological insights by comparative analysis of high-throughput phosphoproteomics datasets. We expect the rapidly growing body of data from high-throughput mass spectrometry analysis to make comparative phosphoproteomics a powerful tool for elucidating the evolutionary and functional dynamics of reversible phosphorylation.
Nature Methods | 2012
Mao Peng; Nadia Taouatas; Salvatore Cappadona; Bas van Breukelen; Shabaz Mohammed; Arjen Scholten; Albert J. R. Heck
A systematic shortcoming of high-throughput sequence analyses is that they usually neglect the contribution of mtDNA to organismal genotype and phenotype. The coordinated expression of the mitochondrial and nuclear genomes is essential for eukaryotic cells and organisms to function5. Moreover, mitochondrial dysfunctions have pleiotropic effects in multicellular organisms and are associated with a large spectrum of metabolic and neuromuscular disorders, aging and cancer6. Applying our simple but effective method to WES data from diverse cytotypes representing a large variety of physiological and disease conditions could provide valuable insights into pathological effects of mutations and structural variations of mtDNA. Indeed, the integration of mtDNA with nuclear exome data may contribute to a better understanding of nuclear-mitochondrial genome interplay in both healthy and pathological conditions.
Cell Reports | 2015
Piero Giansanti; Thin Thin Aye; Henk van den Toorn; Mao Peng; Bas van Breukelen; Albert J. R. Heck
Although mass-spectrometry-based screens enable thousands of protein phosphorylation sites to be monitored simultaneously, they often do not cover important regulatory sites. Here, we hypothesized that this is due to the fact that nearly all large-scale phosphoproteome studies are initiated by trypsin digestion. We tested this hypothesis using multiple proteases for protein digestion prior to Ti(4+)-IMAC-based enrichment. This approach increases the size of the detectable phosphoproteome substantially and confirms the considerable tryptic bias in public repositories. We define and make available a less biased human phosphopeptide atlas of 37,771 unique phosphopeptides, correlating to 18,430 unique phosphosites, of which fewer than 1/3 were identified in more than one protease data set. We demonstrate that each protein phosphorylation site can be linked to a preferred protease, enhancing its detection by mass spectrometry (MS). For specific sites, this approach increases their detectability by more than 1,000-fold.
Journal of Virology | 2004
Travis H. Stracker; Geoffrey D. Cassell; Peter Ward; Yueh Ming Loo; Bas van Breukelen; Stacy D. Carrington-Lawrence; Robert K. Hamatake; Peter C. van der Vliet; Sandra K. Weller; Thomas Melendy; Matthew D. Weitzman
ABSTRACT Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions.